Page 40 - 《摩擦学学报》2021年第4期
P. 40

第 4 期                      卢铜钢, 等: 洛伦兹力与温度场作用下枢轨摩擦磨损特性                                       483

                 railgun  gouging  mechanism  based  on  material  point  method[J].  [11]  Stefani  F,  Parker  J  V.  Experiments  to  measure  gouging  threshold
                 Explosion and Shock Waves, 2017, 37(2): 307–314 (in Chinese) [吴  velocity for various metals against copper[J]. IEEE Transactions on
                 金国, 林庆华, 弯港, 等. 基于物质点法的轨道炮刨削机理三维数                 Magnetics, 1999, 35(1): 312–316. doi: 10.1109/20.738423.
                 值 研 究 [J].  爆 炸 与 冲 击 ,  2017,  37(2):  307–314].  doi:  [12]  Bansal D G, Streator J L. Behavior of copper-aluminum tribological
                 10.11883/1001-1455(2017)02-0307-08.               pair  under  high  current  densities[J].  IEEE  Transactions  on
            [  2  ]  Wang  Zhenchun,  Bao  Zhiyong,  Cao  Haiyao,  et  al.  Research  on  Magnetics, 2009, 45(1): 244–249. doi: 10.1109/tmag.2008.2008684.
                 contact  characteristics  of  armature  and  rail  in  augmented  [13]  Dong  Lin,  Chen  Guangxiong,  Zhu  Minhao,  et  al.  Tribological
                 electromagnetic  railgun[J].  Acta  Armamentarii,  2018,  39(3):  characteristics  between  third  rail  and  collector  shoe  under  electric
                 451–456 (in Chinese) [王振春, 鲍志勇, 曹海要, 等. 增强型电磁轨    current[J]. Tribology, 2007, 27(3): 274–278 (in Chinese) [董霖, 陈
                 道炮电枢轨道接触特性研究[J]. 兵工学报, 2018, 39(3): 451–456].     光雄, 朱旻昊, 等. 地铁钢铝复合式第三轨/受电靴载流摩擦磨损
                 doi: 10.3969/j.issn.1000-1093.2018.03.005.
                                                                   特性研究[J]. 摩擦学学报, 2007, 27(3): 274–278]. doi: 10.16078/j.
            [  3  ]  Zhang Yuyan, Sun Shasha, Wang Zhenchun, et al. Simulation and
                                                                   tribology.2007.03.016.
                 measurement  of  surface  transient  temperature  field  of  high-speed
                                                               [14]  Huang Wei, Yang Liming, Shi Gening, et al. Damage behavior of
                 current-carrying  armature[J].  Acta  Armamentarii,  2017,  38(9):
                                                                   CuCrZr  alloy  rail  during  electromagnetic  launching[J].  Acta
                 1692–1698 (in Chinese) [张玉燕, 孙莎莎, 王振春, 等. 高速载流电
                                                                   Armamentarii, 2020, 41(5): 858–864 (in Chinese) [黄伟, 杨黎明, 史
                 枢 表 面 瞬 态 温 度 场 仿 真 与 测 量 [J].  兵 工 学 报 ,  2017,  38(9):
                                                                   戈宁, 等. 电磁发射条件下CuCrZr合金材料轨道损伤行为研究[J].
                 1692–1698]. doi: 10.3969/j.issn.1000-1093.2017.09.004.
                                                                   兵工学报, 2020, 41(5): 858–864]. doi: 10.3969/j.issn.1000-1093.2020.
            [  4  ]  Gui  Changlin.  The  archard  design  calculation  model  and  its
                                                                   05.004.
                 application methods[J]. Lubrication Engineering, 1990, 15(1): 12–21
                                                               [15]  Brown  L,  Xu  D,  Ravi-Chandar  K,  et  al.  Coefficient  of  friction
                 (in Chinese) [桂长林. Archard的磨损设计计算模型及其应用方法
                                                                   measurement  in  the  presence  of  high  current  density[J].  IEEE
                 [J]. 润滑与密封, 1990, 15(1): 12–21].
                                                                   Transactions  on  Magnetics,  2007,  43(1):  334–337.  doi:  10.1109/
            [  5  ]  Wang Xuanguo, Yan Xinping, Li Taosheng, et al. Research status of
                                                                   tmag.2006.887697.
                 wear  numerical  simulation  technology[J].  Tribology,  2004,  24(2):
                                                               [16]  Chen  Yun,  Xu  Weidong,  Yuan  Weiqun,  et  al.  Sliding  electrical
                 188–192 (in Chinese) [汪选国, 严新平, 李涛生, 等. 磨损数值仿真
                                                                   contacts between aluminum armature and different material rails in
                 技术的研究进展[J]. 摩擦学学报, 2004, 24(2): 188–192]. doi:
                                                                   railgun[J].  High  Voltage  Engineering,  2013,  39(4):  937–942
                 10.3321/j.issn:1004-0595.2004.02.022.
                                                                   (in Chinese) [陈允, 徐伟东, 袁伟群, 等. 电磁发射中铝电枢与不同
            [  6  ]  Wen Shizhu. Research progress on wear of materials[J]. Tribology,
                                                                   材料导轨间的滑动电接触特性[J]. 高电压技术, 2013, 39(4):
                 2008, 28(1): 1–5 (in Chinese) [温诗铸. 材料磨损研究的进展与思
                                                                   937–942]. doi: 10.3969/j.issn.1003-6520.2013.04.025.
                 考[J]. 摩擦学学报, 2008, 28(1): 1–5]. doi: 10.16078/j.tribology.
                                                               [17]  Li  He,  Lei  Bin,  Lv  Qingao,  et  al.  Simulation  of  temperature
                 2008.01.002.
                                                                   distribution  on  contact  surface  of  armature  for  electromagnetic
            [  7  ]  Hui Yang, Liu Guimin, Yan Tao, et al. Research status and prospect
                                                                   railgun[J].  Lubrication  Engineering,  2012,  37(11):  22–26,  38
                 of  current-carrying  friction  and  wear[J].  Materials  Reports,  2019,
                                                                   (in Chinese) [李鹤, 雷斌, 吕庆敖, 等. 电磁轨道炮电枢接触界面温
                 33(13): 2272–2280 (in Chinese) [惠阳, 刘贵民, 闫涛, 等. 载流摩擦
                                                                   度场仿真分析[J]. 润滑与密封, 2012, 37(11): 22–26, 38]. doi:
                 磨损研究现状及展望[J]. 材料导报, 2019, 33(13): 2272–2280]. doi:
                                                                   10.3969/j.issn.0254-0150.2012.11.005.
                 10.11896/cldb.18040166.
                                                               [18]  Xu  Zhidong,  Fan  Ziliang.  A  phenomenological  explanation  of  the
            [  8  ]  Xie Bohua, Ju Pengfei, Ji Li, et al. Research progress on tribology of
                 electrical  contact  materials[J].  Tribology,  2019,  39(5):  656–668  variation  of  elastic  modulus  with  temperature  for  metallic
                 (in Chinese) [谢博华, 鞠鹏飞, 吉利, 等. 电接触材料摩擦学研究进        materials[J]. Journal of Southwest Jiaotong University, 1993, 28(2):
                 展[J]. 摩擦学学报, 2019, 39(5): 656–668]. doi: 10.16078/j.tribology.  87–92 (in Chinese) [徐志东, 范子亮. 金属材料的弹性模量随温度
                 2019025.                                          变化规律的唯象解释[J]. 西南交通大学学报, 1993, 28(2): 87–92].
            [  9  ]  Marshall  R  A.  The  mechanism  of  current  transfer  in  high  current  [19]  Chen  Qingqiang,  Zhao  Zhihao,  Zhu  Qingfeng,  et  al.  Effect  of
                 sliding contacts[J]. Wear, 1976, 37(2): 233–240. doi: 10.1016/0043-  different  annealing  temperatures  on  hardness  of  6201  aluminum
                 1648(76)90030-2.                                  alloy[J].  Transactions  of  Materials  and  Heat  Treatment,  2016,
            [10]  Stefani  F,  Parker  J  V.  Experiments  to  measure  wear  in  aluminum  37(12): 24–29 (in Chinese) [陈庆强, 赵志浩, 朱庆丰, 等. 退火温度
                 armatures  in  railguns[J].  IEEE  Transactions  on  Magnetics,  1999,  对6201铝合金硬度的影响[J]. 材料热处理学报, 2016, 37(12):
                 35(1): 100–106. doi: 10.1109/20.738385.           24–29]. doi: 10.13289/j.issn.1009-6264.2016.12.005.
   35   36   37   38   39   40   41   42   43   44   45