Page 26 - 《摩擦学学报》2021年第3期
P. 26

第 3 期              黄国威, 等: Cu663合金表面石墨-铜三维复合润滑层的构筑与摩擦学性能研究                                   315

                 behavior   and   lubrication   mechanism   of   self-lubricating  Cu  composite  by  mechanical  alloying[J].  Powder  Metallurgy
                 ceramic/metal composites: The effect of matrix type on the friction  Technology, 2014, 32(3): 211–216 (in Chinese) [李斌, 刘贵民, 丁
                 and  wear  properties[J].  Wear,  2017,  372-373:  130–138.  doi:  华东, 等. 机械合金化制备(Al 2 O 3 +Gr)/Cu复合材料的性能[J]. 粉
                 10.1016/j.wear.2016.12.005.
                                                                   末 冶 金 技 术 ,  2014,  32(3):  211–216].  doi:  10.19591/j.cnki.cn11-
            [  4  ]  Wang  Xiufei,  Yin  Cailiu.  Application  situations  of  powder
                                                                   1974/tf.2014.03.010.
                 metallurgy  friction  materials  and  requests  of  raw  materials[J].
                                                               [16]  Zeng  Yawei,  Chen  Liyu,  Yang  Xiaming,  et  al.  State  of  surface
                 Powder metallurgy industry, 2017, 27(3): 1–6 (in Chinese) [王秀飞,
                                                                   texturing for improving tribology performance[J]. Tool Engineering,
                 伊彩流. 粉末冶金摩擦材料的应用现状及对原材料的要求[J]. 粉
                                                                   2016, 50(5): 3–7 (in Chinese) [曾亚维, 陈立宇, 杨夏明, 等. 表面微
                 末冶金工业, 2017, 27(3): 1–6]. doi: 10.13228/j.boyuan.issn1006-
                                                                   织构改善摩擦性能的研究进展[J]. 工具技术, 2016, 50(5): 3–7].
                 6543.20170069.
                                                                   doi: 10.16567/j.cnki.1000-7008.2016.05.001.
            [  5  ]  Grandin M, Wiklund U. Influence of mechanical and electrical load
                                                               [17]  Révész  Á,  Szommer  P,  Szabó  P  J,  et  al.  Microstructure  and
                 on a copper/copper-graphite sliding electrical contact[J]. Tribology
                                                                   morphology  of  Cu-Zr-Ti  coatings  produced  by  thermal  spray  and
                 International, 2018, 121: 1–9. doi: 10.1016/j.triboint.2018.01.004.
                                                                   treated  by  surface  mechanical  attrition[J].  Journal  of  Alloys  and
            [  6  ]  Pan J M, Yin J W, Xia Y F, et al. The microstructure and properties
                                                                   Compounds,  2011,  509:  S482–S485.  doi:  10.1016/j.jallcom.2010.
                 of  bronze  matrix  composites  with  surface-modified  graphite  by
                 titanium  carbide  adhesion[J].  Tribology  International,  2019,  140:  10.170.
                 105892. doi: 10.1016/j.triboint.2019.105892.  [18]  Avelar-Batista J C, Spain E, Letch M, et al. Improvements on the
            [  7  ]  Lu Hailin, Zhang Pengpeng, Ren Shanshan, et al. The preparation of  wear  resistance  of  high  thermal  conductivity  Cu  alloys  using  an
                 polytrifluorochloroethylene (PCTFE) micro-particles and application  electroless  Ni-P  coating  prior  to  PVD  deposition[J].  Surface  and
                 on treating bearing steel surfaces to improve the lubrication effect  Coatings  Technology,  2006,  201(7):  4052–4057.  doi:  10.1016/
                 for copper-graphite (Cu/C)[J]. Applied Surface Science, 2018, 427:  j.surfcoat.2006.08.038.
                 1242–1247. doi: 10.1016/j.apsusc.2017.08.206.  [19]  Wang  Hefeng,  Shu  Xuefeng,  Guo  Meiqing,  et  al.  Structural,
            [  8  ]  Zheng R G, Liu X M. Effect of load and velocity on wear behaviour  tribological  and  antibacterial  activities  of  Ti-Cu-N  hard  coatings
                 of  Cu  based  self-lubricating  composite[J].  Materials  Research  prepared  by  plasma  surface  alloying  technique[J].  Surface  and
                 Innovations, 2014, 18(sup2): S2-12–S2-15. doi: 10.1179/1432891714Z.  Coatings Technology, 2013, 235: 235–240. doi: 10.1016/j.surfcoat.
                 000000000513.                                     2013.07.038.
            [  9  ]  Du  Ming.  Study  on  tribological  properties  of  graphite  and  copper  [20]  Uzunov T D, Stojanov S P, Lambov S I. Thin films of intermetallic
                 coated  graphite-copper  composite  materials[D].  Changchun:  Cu/Ti compounds and their possible uses[J]. Vacuum, 1999, 52(3):
                 Changchun University of Technology, 2018(in Chinese) [杜明. 石墨
                                                                   321–325. doi: 10.1016/s0042-207x(98)00312-1.
                 及镀铜石墨-铜复合材料摩擦学性能研究[D]. 长春: 长春工业大
                                                               [21]  Semboshi  S,  Takasugi  T.  Fabrication  of  high-strength  and  high-
                 学, 2018].
                                                                   conductivity Cu-Ti alloy wire by aging in a hydrogen atmosphere[J].
            [10]  Jiang  Xiaofang,  Song  Junjie,  Su  Yunfeng,  et  al.  Novel  design  of
                                                                   Journal  of  Alloys  and  Compounds,  2013,  580:  S397–S400.  doi:
                 copper-graphite   self-lubricating   composites   for   reliability
                                                                   10.1016/j.jallcom.2013.03.216.
                 improvement  based  on  3D  network  structures  of  copper  matrix[J].
                                                               [22]  Semboshi  S,  Nishida  T,  Numakura  H.  Microstructure  and
                 Tribology  Letters,  2018,  66(4):  1–11.  doi:  10.1007/s11249-018-
                                                                   mechanical  properties  of  Cu-3  at.%  Ti  alloy  aged  in  a  hydrogen
                 1098-7.
                                                                   atmosphere[J]. Materials Science and Engineering: A, 2009, 517(1-
            [11]  Zhou Shengfeng, Zhang Tianyou, Xiong Zheng, et al. Investigation
                                                                   2): 105–113. doi: 10.1016/j.msea.2009.03.047.
                 of Cu-Fe-based coating produced on copper alloy substrate by laser
                                                               [23]  Liu Y B, Lim S C, Ray S, et al. Friction and wear of aluminium-
                 induction  hybrid  rapid  cladding[J].  Optics  &  Laser  Technology,
                                                                   graphite  composites:  the  smearing  process  of  graphite  during
                 2014, 59: 131–136. doi: 10.1016/j.optlastec.2013.12.013.
                                                                   sliding[J].  Wear,  1992,  159(2):  201–205.  doi:  10.1016/0043-
            [12]  Wang  Zhen.  Study  on  laser  surface  strengthening  process  and
                                                                   1648(92)90303-P.
                 properties  of  chromium  bronze  alloy[D].  Shenyang:  Shenyang
                                                               [24]  Riahi A R, Alpas A T. The role of tribo-layers on the sliding wear
                 Ligong University, 2020 (in Chinese) [王震. 铬青铜合金激光表面
                                                                   behavior of graphitic aluminum matrix composites[J]. Wear, 2001,
                 强化工艺与性能研究[D]. 沈阳: 沈阳理工大学, 2020].
                                                                   251(1-12): 1396–1407. doi: 10.1016/S0043-1648(01)00796-7.
            [13]  Carrasco C A, Vergara S V, Benavente G R, et al. The relationship
                 between residual stress and process parameters in TiN coatings on  [25]  Cui  Gongjun,  Bi  Qinling,  Niu  Muye,  et  al.  The  tribological
                 copper alloy substrates[J]. Materials Characterization, 2002, 48(1):  properties  of  bronze-SiC-graphite  composites  under  sea  water
                 81–88. doi: 10.1016/S1044-5803(02)00256-5.        condition[J].  Tribology  International,  2013,  60:  25–35.  doi:
            [14]  Ma  Jia.  Preparation  and  properties  of  copper-graphite  composite  10.1016/j.triboint.2012.11.005.
                 friction material analysis[D]. Xi'an: Xi'an University of Technology,  [26]  Jia  Junhong,  Chen  Jianmin,  Zhou  Huidi,  et  al.  Friction  and  wear
                 2016 (in Chinese) [马佳. 铜石墨复合摩擦材料的制备及性能分析          properties of bronze-graphite composite under water lubrication[J].
                 [D]. 西安: 西安理工大学, 2016].                           Tribology International, 2004, 37(5): 423–429. doi: 10.1016/j.triboint.
            [15]  Li Bin, Liu Guimin, Ding Huadong, et al. Preparation of(Al 2 O 3 +Gr)/  2003.12.013.
   21   22   23   24   25   26   27   28   29   30   31