Page 26 - 《摩擦学学报》2021年第3期
P. 26
第 3 期 黄国威, 等: Cu663合金表面石墨-铜三维复合润滑层的构筑与摩擦学性能研究 315
behavior and lubrication mechanism of self-lubricating Cu composite by mechanical alloying[J]. Powder Metallurgy
ceramic/metal composites: The effect of matrix type on the friction Technology, 2014, 32(3): 211–216 (in Chinese) [李斌, 刘贵民, 丁
and wear properties[J]. Wear, 2017, 372-373: 130–138. doi: 华东, 等. 机械合金化制备(Al 2 O 3 +Gr)/Cu复合材料的性能[J]. 粉
10.1016/j.wear.2016.12.005.
末 冶 金 技 术 , 2014, 32(3): 211–216]. doi: 10.19591/j.cnki.cn11-
[ 4 ] Wang Xiufei, Yin Cailiu. Application situations of powder
1974/tf.2014.03.010.
metallurgy friction materials and requests of raw materials[J].
[16] Zeng Yawei, Chen Liyu, Yang Xiaming, et al. State of surface
Powder metallurgy industry, 2017, 27(3): 1–6 (in Chinese) [王秀飞,
texturing for improving tribology performance[J]. Tool Engineering,
伊彩流. 粉末冶金摩擦材料的应用现状及对原材料的要求[J]. 粉
2016, 50(5): 3–7 (in Chinese) [曾亚维, 陈立宇, 杨夏明, 等. 表面微
末冶金工业, 2017, 27(3): 1–6]. doi: 10.13228/j.boyuan.issn1006-
织构改善摩擦性能的研究进展[J]. 工具技术, 2016, 50(5): 3–7].
6543.20170069.
doi: 10.16567/j.cnki.1000-7008.2016.05.001.
[ 5 ] Grandin M, Wiklund U. Influence of mechanical and electrical load
[17] Révész Á, Szommer P, Szabó P J, et al. Microstructure and
on a copper/copper-graphite sliding electrical contact[J]. Tribology
morphology of Cu-Zr-Ti coatings produced by thermal spray and
International, 2018, 121: 1–9. doi: 10.1016/j.triboint.2018.01.004.
treated by surface mechanical attrition[J]. Journal of Alloys and
[ 6 ] Pan J M, Yin J W, Xia Y F, et al. The microstructure and properties
Compounds, 2011, 509: S482–S485. doi: 10.1016/j.jallcom.2010.
of bronze matrix composites with surface-modified graphite by
titanium carbide adhesion[J]. Tribology International, 2019, 140: 10.170.
105892. doi: 10.1016/j.triboint.2019.105892. [18] Avelar-Batista J C, Spain E, Letch M, et al. Improvements on the
[ 7 ] Lu Hailin, Zhang Pengpeng, Ren Shanshan, et al. The preparation of wear resistance of high thermal conductivity Cu alloys using an
polytrifluorochloroethylene (PCTFE) micro-particles and application electroless Ni-P coating prior to PVD deposition[J]. Surface and
on treating bearing steel surfaces to improve the lubrication effect Coatings Technology, 2006, 201(7): 4052–4057. doi: 10.1016/
for copper-graphite (Cu/C)[J]. Applied Surface Science, 2018, 427: j.surfcoat.2006.08.038.
1242–1247. doi: 10.1016/j.apsusc.2017.08.206. [19] Wang Hefeng, Shu Xuefeng, Guo Meiqing, et al. Structural,
[ 8 ] Zheng R G, Liu X M. Effect of load and velocity on wear behaviour tribological and antibacterial activities of Ti-Cu-N hard coatings
of Cu based self-lubricating composite[J]. Materials Research prepared by plasma surface alloying technique[J]. Surface and
Innovations, 2014, 18(sup2): S2-12–S2-15. doi: 10.1179/1432891714Z. Coatings Technology, 2013, 235: 235–240. doi: 10.1016/j.surfcoat.
000000000513. 2013.07.038.
[ 9 ] Du Ming. Study on tribological properties of graphite and copper [20] Uzunov T D, Stojanov S P, Lambov S I. Thin films of intermetallic
coated graphite-copper composite materials[D]. Changchun: Cu/Ti compounds and their possible uses[J]. Vacuum, 1999, 52(3):
Changchun University of Technology, 2018(in Chinese) [杜明. 石墨
321–325. doi: 10.1016/s0042-207x(98)00312-1.
及镀铜石墨-铜复合材料摩擦学性能研究[D]. 长春: 长春工业大
[21] Semboshi S, Takasugi T. Fabrication of high-strength and high-
学, 2018].
conductivity Cu-Ti alloy wire by aging in a hydrogen atmosphere[J].
[10] Jiang Xiaofang, Song Junjie, Su Yunfeng, et al. Novel design of
Journal of Alloys and Compounds, 2013, 580: S397–S400. doi:
copper-graphite self-lubricating composites for reliability
10.1016/j.jallcom.2013.03.216.
improvement based on 3D network structures of copper matrix[J].
[22] Semboshi S, Nishida T, Numakura H. Microstructure and
Tribology Letters, 2018, 66(4): 1–11. doi: 10.1007/s11249-018-
mechanical properties of Cu-3 at.% Ti alloy aged in a hydrogen
1098-7.
atmosphere[J]. Materials Science and Engineering: A, 2009, 517(1-
[11] Zhou Shengfeng, Zhang Tianyou, Xiong Zheng, et al. Investigation
2): 105–113. doi: 10.1016/j.msea.2009.03.047.
of Cu-Fe-based coating produced on copper alloy substrate by laser
[23] Liu Y B, Lim S C, Ray S, et al. Friction and wear of aluminium-
induction hybrid rapid cladding[J]. Optics & Laser Technology,
graphite composites: the smearing process of graphite during
2014, 59: 131–136. doi: 10.1016/j.optlastec.2013.12.013.
sliding[J]. Wear, 1992, 159(2): 201–205. doi: 10.1016/0043-
[12] Wang Zhen. Study on laser surface strengthening process and
1648(92)90303-P.
properties of chromium bronze alloy[D]. Shenyang: Shenyang
[24] Riahi A R, Alpas A T. The role of tribo-layers on the sliding wear
Ligong University, 2020 (in Chinese) [王震. 铬青铜合金激光表面
behavior of graphitic aluminum matrix composites[J]. Wear, 2001,
强化工艺与性能研究[D]. 沈阳: 沈阳理工大学, 2020].
251(1-12): 1396–1407. doi: 10.1016/S0043-1648(01)00796-7.
[13] Carrasco C A, Vergara S V, Benavente G R, et al. The relationship
between residual stress and process parameters in TiN coatings on [25] Cui Gongjun, Bi Qinling, Niu Muye, et al. The tribological
copper alloy substrates[J]. Materials Characterization, 2002, 48(1): properties of bronze-SiC-graphite composites under sea water
81–88. doi: 10.1016/S1044-5803(02)00256-5. condition[J]. Tribology International, 2013, 60: 25–35. doi:
[14] Ma Jia. Preparation and properties of copper-graphite composite 10.1016/j.triboint.2012.11.005.
friction material analysis[D]. Xi'an: Xi'an University of Technology, [26] Jia Junhong, Chen Jianmin, Zhou Huidi, et al. Friction and wear
2016 (in Chinese) [马佳. 铜石墨复合摩擦材料的制备及性能分析 properties of bronze-graphite composite under water lubrication[J].
[D]. 西安: 西安理工大学, 2016]. Tribology International, 2004, 37(5): 423–429. doi: 10.1016/j.triboint.
[15] Li Bin, Liu Guimin, Ding Huadong, et al. Preparation of(Al 2 O 3 +Gr)/ 2003.12.013.