Page 62 - 《摩擦学学报》2020年第6期
P. 62
第 6 期 秦鹏博, 等: 偏心迷宫密封动静特性研究 745
53−63. ratios[J]. Journal of Xi ’an Jiaotong University, 2017, 51(7): 1–7
[10] Benckert H, Wachter J. Flow induced spring coefficients of (in Chinese) [李志刚, 陈尧兴, 李军. 高偏心率下旋转密封泄漏特
labyrinth seals for application in rotor-dynamics[C]. Proceedings of 性和静态动力特性研究[J]. 西安交通大学学报, 2017, 51(7): 1–7].
the Workshop held on Rotor-dynamic instability Problems in High doi: 10.7652/xjtuxb201707001.
Performance Turbomachinery, Texas A&M University, United [19] Chen Luqi, Zhang Wanfu, Gu Qianlei, et al. Research on the flow
States, 1980: 189−212. characteristics of smooth annular seal under choked flow
[11] Leong Y, Brown R-D. Experimental investigation of lateral forces conditions[J]. Proceedings of the CSEE, 2018, 38(22): 6632–6640
induced by flow through model labyrinth glands[C]. Rotordynamic (in Chinese) [陈璐琪, 张万福, 顾乾磊, 等. 光滑环形密封阻塞流动
Instability Problems in High-Performance Turbomachinery 特性研究[J]. 中国电机工程学报, 2018, 38(22): 6632–6640]. doi:
Workshop, United States: 1984: 187−210. CNKI:SUN:ZGDC.0.2018-22-016.
[12] Rajakumar C, Sisto F. Experimental investigations of rotor whirl [20] Zhang Wanfu, Yang Jiangang, Cao Hao, et al. Theoretical and
excitation forces induced by labyrinth seal flow[J]. Journal of experimental research of tangential fluid-induced force and its
Vibration, Acoustics, Stress, and Reliability in Design, 1990, 112(4): influence on stability in eccentric seal[J]. Journal of Mechanical
515–522. doi: 10.1115/1.2930137. Engineering, 2011, 47(17): 92–98 (in Chinese) [张万福, 杨建刚, 曹
[13] Alexander C R, Childs D W, Yang Z. Theory versus experiment for 浩, 等. 偏心密封内切向气流力及其对稳定性影响的理论与试验
the rotordynamic characteristics of a smooth annular gas seal at 研究[J]. 机械工程学报, 2011, 47(17): 92–98]. doi: 10.3901/JME.
eccentric positions[J]. Journal of Tribology, 1995, 117(1): 148–152. 2011.17.092.
doi: 10.1115/1.2830591. [21] Zhang W F, Gu Q L, Yang J G, et al. Application of a novel
[14] Marquette O R, Childs D W, San Andres L. Eccentricity effects on rotordynamic identification method for annular seals with arbitrary
the rotordynamic coefficients of plain annular seals: Theory versus elliptical orbits and eccentricities[J]. Journal of Engineering for Gas
experiment[J]. Journal of Tribology, 1997, 119(3): 443–447. doi: Turbines and Power, 2019, 141(9): 091016. doi: 10.1115/1.4044121.
10.1115/1.2833515. [22] Iwatsubo T, Ishimaru H. Consideration of whirl frequency ratio and
[15] Weatherwax M, Childs D W. Theory versus experiment for the effective damping coefficient of seal[J]. Journal of System Design
rotordynamic characteristics of a high pressure honeycomb annular and Dynamics, 2010, 4(1): 177–188. doi: 10.1299/jsdd.4.177.
gas seal at eccentric positions[J]. Journal of Tribology, 2003, 125(2): [23] Li Jun, Yan Xin, Feng Zhenping, et al. State of the art of
422–429. doi: 10.1115/1.1504093. turbomachinery damper seals technology and their rotordynamic
[16] Arghir M, Defaye C, Frêne J. The lomakin effect in annular gas characteristics[J]. Thermal Turbine, 2009, 38(1): 5–9 (in Chinese)
seals under choked flow conditions[J]. Journal of Engineering for [李军, 晏鑫, 丰镇平, 等. 透平机械阻尼密封技术及其转子动力特
Gas Turbines and Power, 2007, 129(4): 1028–1034. doi: 10.1115/ 性研究进展[J]. 热力透平, 2009, 38(1): 5–9]. doi: 10.3969/j.issn.
1.2434344. 1672-5549.2009.01.002.
[17] Ertas B H, Delgado A, Vannini G. Rotordynamic force coefficients [24] Armstrong J, Perricone F. Turbine instability solution-honeycomb
for three types of annular gas seals with inlet preswirl and high seals[C]. Proceedings of the Turbomachinery Laboratories, Texas
differential pressure ratio[J]. Journal of Engineering for Gas A&M University, United States, 1996: 47−56.
Turbines and Power, 2012, 134(4): 042503. doi: 10.1115/1.4004537. [25] Baumann U. Rotordynamic stability tests on high-pressure radial
[18] Li Zhigang, Chen Yaoxing, Li Jun. Investigation on the leakage and compressors[C]. Proceedings of the 28th Turbomachinery
static dynamic characteristics of rotating seals at high eccentricity Symposium, Texas A&M University, United States, 1999: 115−122.