Page 72 - 《爆炸与冲击》2025年第9期
P. 72
第 45 卷 周 鑫,等: 混凝土中柱形装药的爆炸破坏分区及应力波衰减规律 第 9 期
HUANG J R, LIU G K, WU B, et al. Testing and simulation of dynamic stress wave in concrete under explosion and
impact [J]. Protective Engineering, 2020, 42(4): 23–28. DOI: 10.3969/j.issn.1674-1854.2020.04.003.
[7] GEBBEKEN N, GREULICH S, PIETZSCH A. Hugoniot properties for concrete determined by full-scale detonation
experiments and flyer-plate-impact tests [J]. International Journal of Impact Engineering, 2006, 32(12): 2017–2031. DOI:
10.1016/j.ijimpeng.2005.08.003.
[8] SHERKAR P, SHIN J, WHITTAKER A, et al. Influence of charge shape and point of detonation on blast-resistant design [J].
Journal of Structural Engineering, 2016, 142(2): 04015109. DOI: 10.1061/(ASCE)ST.1943-541X.0001371.
[9] XIAO W F, ANDRAE M, GEBBEKEN N. Effect of charge shape and initiation configuration of explosive cylinders
detonating in free air on blast-resistant design [J]. Journal of Structural Engineering, 2020, 146(8): 04020146. DOI: 10.1061/
(ASCE)ST.1943-541X.0002694.
[10] GAO C, KONG X Z, FANG Q, et al. Numerical investigation on free air blast loads generated from center-initiated cylindrical
charges with varied aspect ratio in arbitrary orientation [J]. Defence Technology, 2022, 18(9): 1662–1678. DOI: 10.1016/j.dt.
2021.07.013.
[11] 王明涛, 程月华, 吴昊. 柱形装药空中爆炸冲击波荷载研究 [J]. 爆炸与冲击, 2024, 44(4): 043201. DOI: 10.11883/bzycj-
2023-0197.
WANG M T, CHENG Y H, WU H. Study on blast loadings of cylindrical charges air explosion [J]. Explosion and Shock
Waves, 2024, 44(4): 043201. DOI: 10.11883/bzycj-2023-0197.
[12] GAO C, KONG X Z, FANG Q. Experimental and numerical investigation on the attenuation of blast waves in concrete
induced by cylindrical charge explosion [J]. International Journal of Impact Engineering, 2023, 174: 104491. DOI: 10.1016/
j.ijimpeng.2023.104491.
[13] 高矗, 孔祥振, 方秦, 等. 混凝土中爆炸应力波衰减规律的数值模拟研究 [J]. 爆炸与冲击, 2022, 42(12): 123202. DOI:
10.11883/bzycj-2022-0041.
GAO C, KONG X Z, FANG Q, et al. Numerical study on attenuation of stress wave in concrete subjected to explosion [J].
Explosion and Shock Waves, 2022, 42(12): 123202. DOI: 10.11883/bzycj-2022-0041.
[14] 杨耀宗, 孔祥振, 方秦, 等. 混凝土中带壳柱形装药爆炸应力波衰减规律的数值模拟 [J]. 爆炸与冲击, 2024, 44(11):
112202. DOI: 10.11883/bzycj-2023-0342.
YANG Y Z, KONG X Z, FANG Q, et al. Numerical investigation on attenuation of stress waves in concrete induced by
cylindrical cased charge explosion [J]. Explosion and Shock Waves, 2024, 44(11): 112202. DOI: 10.11883/bzycj-2023-0342.
[15] 吴祥云, 曲建波, 张光明, 等. 岩石中不同埋深爆炸自由场直接地冲击参数的预计方法 [C]//崔京浩. 第 20 届全国结构工
程学术会议论文集 (第Ⅰ册). 《工程力学》杂志社, 2011: 262–267.
WU X Y, QU J B, ZHANG G M, et al. Prediction method of the direct ground shock parameters of explosion at different
buried depths in free field of rock [C]//CUI J H. Proceedings of the Twentieth National Conference on Structural Engineering
(No. I). Engineering Mechanics Magazine, 2011: 262–267.
[16] LIU Z Y, ZHAI J Z, SU S. Numerical simulation on conical shaped charge with copper liner in several typical shapes [J].
Materials Research Proceedings, 2019, 13(3): 7–12. DOI: 10.21741/9781644900338-2.
[17] ABIR M, ARUMUGAM D, DHANA B, et al. Numerical simulation of blast wave propagation in layered soil featuring soil-
structure interaction [C]// COMPDYN. Proceedings of the 6th International Conference on Computational Methods in
Structural Dynamics and Earthquake Engineering Methods in Structural Dynamics and Earthquake Engineering. Rhodes
Island, 2017: 4752–4765. DOI: 10.7712/120117.5759.16936.
[18] KULAK R F, BOJANOWSKI C. Modeling of cone penetration test using SPH and MM-ALE approaches [C]// Ansys
®
Company. Proceedings of the 8th European LS-DYNA Users Conference. Strasbourg, 2011: 1–10.
[19] VAN DORSSELAER N, LAPOUJADE V. A contribution to new ALE 2D method validation [C]// Ansys Company.
®
Proceedings of the 11th International LS-DYNA Users Conference. Dearborn, 2010: 39–50.
[20] MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J].
International Journal of Impact Engineering, 1997, 19(9/10): 847–873. DOI: 10.1016/S0734-743X(97)00023-7.
[21] TU Z G, LU Y. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations [J].
International Journal of Impact Engineering, 2009, 36(1): 132–146. DOI: 10.1016/j.ijimpeng.2007.12.010.
[22] 匡志平, 陈少群. 混凝土 K&C 模型材料参数分析与模拟 [J]. 力学季刊, 2015, 36(3): 517–526. DOI: 10.15959/j.cnki.0254-
092202-16