Page 72 - 《爆炸与冲击》2025年第9期
P. 72

第 45 卷           周    鑫,等: 混凝土中柱形装药的爆炸破坏分区及应力波衰减规律                              第 9 期

                    HUANG  J  R,  LIU  G  K,  WU  B,  et  al.  Testing  and  simulation  of  dynamic  stress  wave  in  concrete  under  explosion  and
                    impact [J]. Protective Engineering, 2020, 42(4): 23–28. DOI: 10.3969/j.issn.1674-1854.2020.04.003.
               [7]   GEBBEKEN  N,  GREULICH  S,  PIETZSCH  A.  Hugoniot  properties  for  concrete  determined  by  full-scale  detonation
                    experiments  and  flyer-plate-impact  tests  [J].  International  Journal  of  Impact  Engineering,  2006,  32(12):  2017–2031.  DOI:
                    10.1016/j.ijimpeng.2005.08.003.
               [8]   SHERKAR P, SHIN J, WHITTAKER A, et al. Influence of charge shape and point of detonation on blast-resistant design [J].
                    Journal of Structural Engineering, 2016, 142(2): 04015109. DOI: 10.1061/(ASCE)ST.1943-541X.0001371.
               [9]   XIAO  W  F,  ANDRAE  M,  GEBBEKEN  N.  Effect  of  charge  shape  and  initiation  configuration  of  explosive  cylinders
                    detonating in free air on blast-resistant design [J]. Journal of Structural Engineering, 2020, 146(8): 04020146. DOI: 10.1061/
                    (ASCE)ST.1943-541X.0002694.
               [10]   GAO C, KONG X Z, FANG Q, et al. Numerical investigation on free air blast loads generated from center-initiated cylindrical
                    charges with varied aspect ratio in arbitrary orientation [J]. Defence Technology, 2022, 18(9): 1662–1678. DOI: 10.1016/j.dt.
                    2021.07.013.
               [11]   王明涛, 程月华, 吴昊. 柱形装药空中爆炸冲击波荷载研究 [J]. 爆炸与冲击, 2024, 44(4): 043201. DOI: 10.11883/bzycj-
                    2023-0197.
                    WANG M T, CHENG Y H, WU H. Study on blast loadings of cylindrical charges air explosion [J]. Explosion and Shock
                    Waves, 2024, 44(4): 043201. DOI: 10.11883/bzycj-2023-0197.
               [12]   GAO  C,  KONG  X  Z,  FANG  Q.  Experimental  and  numerical  investigation  on  the  attenuation  of  blast  waves  in  concrete
                    induced by cylindrical charge explosion [J]. International Journal of Impact Engineering, 2023, 174: 104491. DOI: 10.1016/
                    j.ijimpeng.2023.104491.
               [13]   高矗, 孔祥振, 方秦, 等. 混凝土中爆炸应力波衰减规律的数值模拟研究 [J]. 爆炸与冲击, 2022, 42(12): 123202. DOI:
                    10.11883/bzycj-2022-0041.
                    GAO C, KONG X Z, FANG Q, et al. Numerical study on attenuation of stress wave in concrete subjected to explosion [J].
                    Explosion and Shock Waves, 2022, 42(12): 123202. DOI: 10.11883/bzycj-2022-0041.
               [14]   杨耀宗, 孔祥振, 方秦, 等. 混凝土中带壳柱形装药爆炸应力波衰减规律的数值模拟 [J]. 爆炸与冲击, 2024, 44(11):
                    112202. DOI: 10.11883/bzycj-2023-0342.
                    YANG Y Z, KONG X Z, FANG Q, et al. Numerical investigation on attenuation of stress waves in concrete induced by
                    cylindrical cased charge explosion [J]. Explosion and Shock Waves, 2024, 44(11): 112202. DOI: 10.11883/bzycj-2023-0342.
               [15]   吴祥云, 曲建波, 张光明, 等. 岩石中不同埋深爆炸自由场直接地冲击参数的预计方法 [C]//崔京浩. 第                  20  届全国结构工
                    程学术会议论文集      (第Ⅰ册). 《工程力学》杂志社, 2011: 262–267.
                    WU X Y, QU J B, ZHANG G M, et al. Prediction method of the direct ground shock parameters of explosion at different
                    buried depths in free field of rock [C]//CUI J H. Proceedings of the Twentieth National Conference on Structural Engineering
                    (No. I). Engineering Mechanics Magazine, 2011: 262–267.
               [16]   LIU Z Y, ZHAI J Z, SU S. Numerical simulation on conical shaped charge with copper liner in several typical shapes [J].
                    Materials Research Proceedings, 2019, 13(3): 7–12. DOI: 10.21741/9781644900338-2.
               [17]   ABIR M, ARUMUGAM D, DHANA B, et al. Numerical simulation of blast wave propagation in layered soil featuring soil-
                    structure  interaction  [C]//  COMPDYN.  Proceedings  of  the  6th  International  Conference  on  Computational  Methods  in
                    Structural  Dynamics  and  Earthquake  Engineering  Methods  in  Structural  Dynamics  and  Earthquake  Engineering.  Rhodes
                    Island, 2017: 4752–4765. DOI: 10.7712/120117.5759.16936.
               [18]   KULAK  R  F,  BOJANOWSKI  C.  Modeling  of  cone  penetration  test  using  SPH  and  MM-ALE  approaches  [C]//  Ansys
                                                          ®
                    Company. Proceedings of the 8th European LS-DYNA  Users Conference. Strasbourg, 2011: 1–10.
               [19]   VAN  DORSSELAER  N,  LAPOUJADE  V.  A  contribution  to  new  ALE  2D  method  validation  [C]//  Ansys  Company.
                                                     ®
                    Proceedings of the 11th International LS-DYNA  Users Conference. Dearborn, 2010: 39–50.
               [20]   MALVAR  L  J,  CRAWFORD  J  E,  WESEVICH  J  W,  et  al.  A  plasticity  concrete  material  model  for  DYNA3D  [J].
                    International Journal of Impact Engineering, 1997, 19(9/10): 847–873. DOI: 10.1016/S0734-743X(97)00023-7.
               [21]   TU Z G, LU Y. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations [J].
                    International Journal of Impact Engineering, 2009, 36(1): 132–146. DOI: 10.1016/j.ijimpeng.2007.12.010.
               [22]   匡志平, 陈少群. 混凝土   K&C  模型材料参数分析与模拟 [J]. 力学季刊, 2015, 36(3): 517–526. DOI: 10.15959/j.cnki.0254-


                                                         092202-16
   67   68   69   70   71   72   73   74   75   76   77