Page 35 - 《摩擦学学报》2021年第6期
P. 35

820                                     摩   擦   学   学   报                                 第 41 卷

                 Chinese  Journal  of  Mechanical  Engineering,  2004,  40(8):  18–23  [16]  Shi L B, Wang C, Ding H H, et al. Laboratory investigation on the
                 (in Chinese) [江晓禹, 金学松. 轮轨间的液态介质和表面微观粗糙           particle-size  effects  in  railway  sanding:  Comparisons  between
                 度对接触表面疲劳损伤的影响[J]. 机械工程学报, 2004, 40(8):            standard  sand  and  its  micro  fragments[J].  Tribology  International,
                 18–23]. doi: 10.3321/j.issn:0577-6686.2004.08.004.  2020, 146: 106259. doi: 10.1016/j.triboint.2020.106259.
            [11]  Wang  W  J,  Lewis  R,  Evans  M  D,  et  al.  Influence  of  different  [17]  Zhao Xiangji, Ma Lei, Guo Jun, et al. The effect of round defects on
                 application  of  lubricants  on  wear  and  pre-existing  rolling  contact
                                                                   rolling contact fatigue characteristics of rail materials under dry-wet
                 fatigue  cracks  of  rail  materials[J].  Tribology  Letters,  2017,  65(2):  conditions[J]. Tribology, 2017, 37(4): 544–550 (in Chinese) [赵相
                 58. doi: 10.1007/s11249-017-0841-9.
                                                                   吉, 马蕾, 郭俊, 等. 干-水态下圆形硌伤对钢轨材料滚动接触疲劳
            [12]  Zhou K, Ding H H, Wang W J, et al. Influence of grinding pressure
                                                                   特性影响[J]. 摩擦学学报, 2017, 37(4): 544–550]. doi: 10.16078/j.
                 on  removal  behaviours  of  rail  material[J].  Tribology  International,
                                                                   tribology.2017.04.017.
                 2019, 134: 417–426. doi: 10.1016/j.triboint.2019.02.004.
                                                               [18]  Zhou  L,  Wang  W  J,  Hu  Y,  et  al.  Study  on  the  wear  and  damage
            [13]  Chen H, Ishida M. Influence of rail surface roughness formed by rail
                                                                   behaviors  of  hypereutectoid  rail  steel  in  low  temperature
                 grinding  on  rolling  contact  fatigue[J].  Quarterly  Report  of  RTRI,
                                                                   environment[J].  Wear,  2020:  456–457.  doi:  10.1016/j.wear.2020.
                 2006, 47(4): 216–221. doi: 10.2219/rtriqr.47.216.
                                                                   203365.
            [14]  Gao  N,  Dwyer-Joyce  R  S.  The  effects  of  surface  defects  on  the
                                                               [19]  Ma L, Shi L B, Guo J, et al. On the wear and damage characteristics
                 fatigue  of  water-and  oil-lubricated  contacts[J].  Proceedings  of  the
                                                                   of  rail  material  under  low  temperature  environment  condition[J].
                 Institution  of  Mechanical  Engineers,  Part  J:Journal  of  Engineering
                                                                   Wear, 2018, 394–395: 149–158. doi: 10.1016/j.wear.2017.10.011.
                 Tribology, 2000, 214(6): 611–626. doi: 10.1243/1350650001543458.
                                                               [20]  Guo Shuai, Zhao Xiangji, He Chenggang, et al. Effects of grinding
            [15]  Ma Xiaochuan, Liu Linya, Zhang Pengfei, et al. Numerical method
                 for  predicting  rail  fatigue  crack  initiation  with  peridynamic  marks on fatigue damage of rails under water conditions[J]. China
                 theory[J]. Tribology, 2020, 40(5): 608–614 (in Chinese) [马晓川, 刘  Mechanical Engineering, 2019, 30(8): 889–895 (in Chinese) [郭帅,
                 林芽, 张鹏飞, 等. 近场动力学框架下钢轨疲劳裂纹萌生预测的数                  赵相吉, 何成刚, 等. 水介质下打磨磨痕对钢轨疲劳损伤的影响
                 值方法研究[J]. 摩擦学学报, 2020, 40(5): 608–614]. doi: 10.16078/  [J]. 中国机械工程, 2019, 30(8): 889–895]. doi: 10.3969/j.issn.1004-
                 j.tribology.2020001.                              132X.2019.08.002.
   30   31   32   33   34   35   36   37   38   39   40