Page 34 - 《摩擦学学报》2021年第6期
P. 34
第 6 期 丁昊昊, 等: 钢轨打磨磨痕粗糙度与交叉磨痕对滚动接触疲劳损伤的影响 819
Rolling direction Water flow Rolling direction Water flow
direction
direction
Single direction Cross direction
grinding mark grinding mark
(a) Single direction grinding mark (b) Cross direction grinding mark
Fig. 11 Illustration of the water flow on rail surfaces with single and cross direction grinding marks
图 11 单向与交叉磨痕钢轨表面水介质流动示意图
3 结论 05.015.
[ 3 ] Zhong Wen, Dong Lin, Wang Yu, et al. A comparative investigation
a. 打磨钢轨滚动磨损表面粗糙度比未打磨钢轨 between rolling contact fatigue and wear of high-speed and heavy-
大,且随打磨磨痕粗糙度增加,滚动磨损表面粗糙度 haul railway[J]. Tribology, 2012, 32(1): 96–101 (in Chinese) [钟雯,
呈减小趋势,打磨钢轨滚动磨损后表面硬度比未打磨 董霖, 王宇, 等. 高速与重载铁路的疲劳磨损对比研究[J]. 摩擦学
学报, 2012, 32(1): 96–101]. doi: 10.16078/j.tribology.2012.01.016.
钢轨高.
[ 4 ] Zhou Kun, Wang Wenjian, Liu Qiyue, et al. Research progresses
b. 打磨钢轨滚动接触疲劳损伤比未打磨钢轨严
and prospect of rail grinding mechanism[J]. China Mechanical
重,且随打磨磨痕粗糙度增加,钢轨疲劳损伤呈减缓
Engineering, 2019, 30(3): 284–294 (in Chinese) [周坤, 王文健, 刘
趋势. 当打磨粗糙度增大至7 μm时,裂纹向深处扩展 启跃, 等. 钢轨打磨机理研究进展及展望[J]. 中国机械工程, 2019,
且出现枝裂纹,随打磨粗糙度减小,枝裂纹贯穿连通, 30(3): 284–294].
形成网状裂纹损伤. [ 5 ] Liu Yueming, Li Jianyong, Cai Yonglin, et al. Current state and
c. 打磨钢轨滚动磨损裂纹深度比未打磨钢轨大, development trend of rail grinding technology[J]. China Railway
Science, 2014, 35(4): 29–37 (in Chinese) [刘月明, 李建勇, 蔡永林,
随打磨粗糙度增加,滚动磨损裂纹深度呈减小趋势.
等. 钢轨打磨技术现状和发展趋势[J]. 中国铁道科学, 2014, 35(4):
当打磨粗糙度为1 μm时,滚动磨损的平均裂纹深度最
29–37]. doi: 10.3969/j.issn.1001-4632.2014.04.05.
大,可达83 μm. [ 6 ] Jin Xuesong, Du Xing, Guo Jun, et al. State of arts of research on
d. 交叉磨痕钢轨滚动接触疲劳损伤较单向磨痕 rail grinding[J]. Journal of Southwest Jiaotong University, 2010,
钢轨轻微,−45°和−20°单向磨痕钢轨滚动磨损表面粗 45(1): 1–11 (in Chinese) [金学松, 杜星, 郭俊, 等. 钢轨打磨技术研
糙度为1.2~1.5 μm,滚动接触疲劳裂纹向基体内部扩 究进展[J]. 西南交通大学学报, 2010, 45(1): 1–11]. doi: 10.3969/j.
issn.0258-2724.2010.01.001.
展或形成网状裂纹损伤;交叉磨痕钢轨滚动磨损表面
[ 7 ] Magel E E, Kalousek J. The application of contact mechanics to rail
粗糙度为0.73~0.93 μm,滚动接触疲劳裂纹仅在表层
profile design and rail grinding[J]. Wear, 2002, 253(1–2): 308–316.
扩展. −45°/70°和45°/70°交叉磨痕的滚动损伤比−20°/
doi: 10.1016/S0043-1648(02)00123-0.
90°交叉磨痕钢轨更加轻微. [ 8 ] Zhang Wulin, Fan Xiaoqiang, Zhang Pengfei, et al. Probing the
参 考 文 献 effect of grinding stone strength on rail grinding behavior[J].
Tribology, 2020, 40(3): 385–394 (in Chinese) [章武林, 樊小强, 张
[ 1 ] Zhu Y, Wang W J, Lewis R, et al. A review on wear between 鹏飞, 等. 磨石强度对钢轨打磨行为的影响[J]. 摩擦学学报, 2020,
railway wheels and rails under environmental conditions[J]. Journal 40(3): 385–394]. doi: 10.16078/j.tribology.2019219.
of Tribology, 2019, 141(12): 120801. doi: 10.1115/1.4044464. [ 9 ] Zhou Kun, Ding Haohao, Wang Ruixiang, et al. Experimental
[ 2 ] Wang Yanpeng, Ding Haohao, Zou Qiang, et al. Research progress investigation on material removal mechanism during rail grinding at
on rolling contact fatigue of railway wheel treads[J]. Surface different forward speeds[J]. Tribology International, 2020, 143:
Technology, 2020, 49(5): 120–128 (in Chinese) [王延朋, 丁昊昊, 106040. doi: 10.1016/j.triboint.2019.106040.
邹强, 等. 列车车轮踏面滚动接触疲劳研究进展[J]. 表面技术, [10] Jiang Xiaoyu, Jin Xuesong. Influence of liquid and micro-roughness
2020, 49(5): 120–128]. doi: 10.16490/j.cnki.issn.1001-3660.2020. between wheel and rail on the fatigue damage of contact surface[J].