Page 34 - 《摩擦学学报》2021年第6期
P. 34

第 6 期                丁昊昊, 等: 钢轨打磨磨痕粗糙度与交叉磨痕对滚动接触疲劳损伤的影响                                      819







                     Rolling direction  Water flow                      Rolling direction  Water flow
                                                                                      direction
                                  direction





                                      Single direction                                  Cross direction
                                      grinding mark                                     grinding mark
                        (a) Single direction grinding mark                   (b) Cross direction grinding mark

                         Fig. 11  Illustration of the water flow on rail surfaces with single and cross direction grinding marks
                                         图 11    单向与交叉磨痕钢轨表面水介质流动示意图

            3    结论                                                05.015.
                                                               [  3  ]  Zhong Wen, Dong Lin, Wang Yu, et al. A comparative investigation
                a. 打磨钢轨滚动磨损表面粗糙度比未打磨钢轨                             between rolling contact fatigue and wear of high-speed and heavy-
            大,且随打磨磨痕粗糙度增加,滚动磨损表面粗糙度                                haul railway[J]. Tribology, 2012, 32(1): 96–101 (in Chinese) [钟雯,
            呈减小趋势,打磨钢轨滚动磨损后表面硬度比未打磨                                董霖, 王宇, 等. 高速与重载铁路的疲劳磨损对比研究[J]. 摩擦学
                                                                   学报, 2012, 32(1): 96–101]. doi: 10.16078/j.tribology.2012.01.016.
            钢轨高.
                                                               [  4  ]  Zhou  Kun,  Wang  Wenjian,  Liu  Qiyue,  et  al.  Research  progresses
                b. 打磨钢轨滚动接触疲劳损伤比未打磨钢轨严
                                                                   and  prospect  of  rail  grinding  mechanism[J].  China  Mechanical
            重,且随打磨磨痕粗糙度增加,钢轨疲劳损伤呈减缓
                                                                   Engineering, 2019, 30(3): 284–294 (in Chinese) [周坤, 王文健, 刘
            趋势. 当打磨粗糙度增大至7 μm时,裂纹向深处扩展                             启跃, 等. 钢轨打磨机理研究进展及展望[J]. 中国机械工程, 2019,
            且出现枝裂纹,随打磨粗糙度减小,枝裂纹贯穿连通,                               30(3): 284–294].
            形成网状裂纹损伤.                                          [  5  ]  Liu  Yueming,  Li  Jianyong,  Cai  Yonglin,  et  al.  Current  state  and
                c. 打磨钢轨滚动磨损裂纹深度比未打磨钢轨大,                            development  trend  of  rail  grinding  technology[J].  China  Railway
                                                                   Science, 2014, 35(4): 29–37 (in Chinese) [刘月明, 李建勇, 蔡永林,
            随打磨粗糙度增加,滚动磨损裂纹深度呈减小趋势.
                                                                   等. 钢轨打磨技术现状和发展趋势[J]. 中国铁道科学, 2014, 35(4):
            当打磨粗糙度为1 μm时,滚动磨损的平均裂纹深度最
                                                                   29–37]. doi: 10.3969/j.issn.1001-4632.2014.04.05.
            大,可达83 μm.                                         [  6  ]  Jin Xuesong, Du Xing, Guo Jun, et al. State of arts of research on
                d. 交叉磨痕钢轨滚动接触疲劳损伤较单向磨痕                             rail  grinding[J].  Journal  of  Southwest  Jiaotong  University,  2010,
            钢轨轻微,−45°和−20°单向磨痕钢轨滚动磨损表面粗                            45(1): 1–11 (in Chinese) [金学松, 杜星, 郭俊, 等. 钢轨打磨技术研
            糙度为1.2~1.5 μm,滚动接触疲劳裂纹向基体内部扩                           究进展[J]. 西南交通大学学报, 2010, 45(1): 1–11]. doi: 10.3969/j.
                                                                   issn.0258-2724.2010.01.001.
            展或形成网状裂纹损伤;交叉磨痕钢轨滚动磨损表面
                                                               [  7  ]  Magel E E, Kalousek J. The application of contact mechanics to rail
            粗糙度为0.73~0.93 μm,滚动接触疲劳裂纹仅在表层
                                                                   profile design and rail grinding[J]. Wear, 2002, 253(1–2): 308–316.
            扩展. −45°/70°和45°/70°交叉磨痕的滚动损伤比−20°/
                                                                   doi: 10.1016/S0043-1648(02)00123-0.
            90°交叉磨痕钢轨更加轻微.                                     [  8  ]  Zhang  Wulin,  Fan  Xiaoqiang,  Zhang  Pengfei,  et  al.  Probing  the
            参 考 文 献                                                effect  of  grinding  stone  strength  on  rail  grinding  behavior[J].
                                                                   Tribology, 2020, 40(3): 385–394 (in Chinese) [章武林, 樊小强, 张
            [  1  ]  Zhu  Y,  Wang  W  J,  Lewis  R,  et  al.  A  review  on  wear  between  鹏飞, 等. 磨石强度对钢轨打磨行为的影响[J]. 摩擦学学报, 2020,
                 railway wheels and rails under environmental conditions[J]. Journal  40(3): 385–394]. doi: 10.16078/j.tribology.2019219.
                 of Tribology, 2019, 141(12): 120801. doi: 10.1115/1.4044464.  [  9  ]  Zhou  Kun,  Ding  Haohao,  Wang  Ruixiang,  et  al.  Experimental
            [  2  ]  Wang Yanpeng, Ding Haohao, Zou Qiang, et al. Research progress  investigation on material removal mechanism during rail grinding at
                 on  rolling  contact  fatigue  of  railway  wheel  treads[J].  Surface  different  forward  speeds[J].  Tribology  International,  2020,  143:
                 Technology, 2020, 49(5): 120–128 (in Chinese) [王延朋, 丁昊昊,  106040. doi: 10.1016/j.triboint.2019.106040.
                 邹强, 等. 列车车轮踏面滚动接触疲劳研究进展[J]. 表面技术,             [10]  Jiang Xiaoyu, Jin Xuesong. Influence of liquid and micro-roughness
                 2020,  49(5):  120–128].  doi:  10.16490/j.cnki.issn.1001-3660.2020.  between wheel and rail on the fatigue damage of contact surface[J].
   29   30   31   32   33   34   35   36   37   38   39