Page 51 - 《真空与低温》2025年第3期
P. 51

真空与低温                                 第  31 卷    第  3 期
              322                                     Vacuum and Cryogenics                       2025 年 5 月



                    温   度   对   MEMS        电  容   薄   膜   真   空  计   测   量   性  能   的   影   响  研   究



                            韩晓东    1,2 ,张虎忠 ,习振华 ,陶文泽 ,任正宜 ,贾文杰 ,贺德衍                   1,2 ,李 刚  3*
                                                              3
                                             3
                                                     3
                                                                              3
                                                                      3
                  (1. 兰州大学  材料与能源学院,兰州 730000;2. 兰州大学  航空航天产业研究院,兰州 730000;
                             3. 兰州空间技术物理研究所  真空技术与物理重点实验室,兰州,730000)
                     摘要:MEMS    电容薄膜真空计实现了传统机械式电容薄膜真空计的小型化,在微电子、深空探测等领域有广
                  泛的应用前景。作为一种准确度高、稳定性好、测量结果与气体成分无关的中低真空全压力测量仪器,MEMS                                      电
                  容薄膜真空计测量结果与环境温度密切相关。为保证其测量的准确性,须考虑温度漂移特性并进行修正。论文
                  分析了温度变化对        MEMS  电容薄膜真空计测量性能影响的机理。基于所研制的                      MEMS  电容薄膜真空计,在
                  0.1 Pa 至  101 kPa(大气压)的全量程测量范围内,开展−20~50 ℃       温度范围内真空计压力-电容特性研究。结果表明,
                  MEMS  电容薄膜真空计的测量结果受环境温度的影响,其输出电容随着温度的升高而增大。在真空计测量零点,
                  输出电容随温度的升高而增大,且与温度呈现线性关系。在−20 ℃                      至  50 ℃  的温度范围内,MEMS     电容薄膜真空
                  计在相同压力点下的输出电容也随温度的升高而增大,温度相差                         10 ℃  时,真空计输出电容的相对偏差最大为
                  3.1%。此外,测试结果也表明,温度造成的测量结果偏差大小与待测压力的大小相关。本研究将为                                 MEMS  电容薄
                  膜真空计的温度补偿技术提供有力支撑。
                     关键词:MEMS;电容薄膜真空计;温度影响;实验研究
                     中图分类号:TB772                     文献标志码:A       文章编号:1006−7086(2025)03−0322−07
                     DOI:10.12446/j.issn.1006-7086.2025.03.005

                  Temperature Influence on the Measurement Performance of MEMS Capacitance Diaphragm Gauge


                                                                   3
                                                                               3
                                                        3
                                                                                          3
                                                                                                   1,2
                                             3
                             1,2
                HAN Xiaodong ,ZHANG Huzhong ,XI Zhenhua ,TAO Wenze ,REN Zhengyi ,JIA Wenjie ,HE Deyan ,LI Gang  3*
                   (1. School of Materials & Energy,Lanzhou University,Lanzhou 730000,China;2. Aerospace Industry Reaseach
                    Institute,Lanzhou University ,Lanzhou 730000,China;3. Science and Technology on Vacuum Technology and
                                 Physics Laboratory,Lanzhou Institute of Physics,Lanzhou 730000,China)
                     Abstract:The MEMS capacitance diaphragm gauge (CDG),a miniaturized alternative to traditional mechanical vacu-
                  um gauges,offers key advantages for applications in microelectronics,aerospace,and deep space exploration,including com-
                  pact size,high precision,and gas-independent operation in medium-to-low vacuum environments. However,its performance
                  is highly susceptible to environmental temperature variations. A thorough understanding of its temperature characteristics is
                  therefore critical for implementing effective temperature drift compensation and enhancing measurement accuracy. This study
                  investigates the temperature-dependent behavior of a MEMS CDG developed by the authors. Based on the device's structure
                  and  operating  principles, two  primary  mechanisms  are  identified  as  sources  of  temperature-induced  measurement  error:
                  (1) thermal expansion mismatch between the silicon diaphragm and the glass encapsulation, and (2) temperature-driven
                  changes in the sealed cavity's reference pressure. Theoretical analyses reveal that the mismatch in coefficients of thermal ex-
                  pansion (CTE) between silicon (used for the diaphragm) and glass (used for bonding and encapsulation) causes structural
                  bending as temperature rises. This bending reduces the electrode gap,thereby increasing capacitance. Concurrently,the refer-
                  ence pressure in the sealed cavity increases with temperature,causing slight diaphragm deflection toward the fixed electrode
                  and further modifying capacitance. Experimental evaluation over a temperature range of −20 ℃ to 50 ℃ and a pressure range
                  from 0.1 Pa to atmospheric pressure confirms these effects. At zero pressure,output capacitance increases linearly with tem-
                  perature,while across the full temperature range,the capacitance-temperature response exhibits nonlinear behavior. A maxi-


              收稿日期:2024−12−25
              基金项目:国家重点研发计划项目(2023YFF0717200);国家自然科学基金项目(62401238);甘肃省青年科技基金项目
                      (24JRRA453);国家资助博士后项目(GZC20240627);国防科工局稳定支持一般项目(HTKJ2023KL510005)
              作者简介:韩晓东,博士。E-mail:hanxdcast@163.com
              通信作者:李刚,博士,高级工程师。E-mail:ligangcasc510@163.com
   46   47   48   49   50   51   52   53   54   55   56