Page 31 - 《真空与低温》2025年第3期
P. 31

真空与低温                                 第  31 卷    第  3 期
              302                                     Vacuum and Cryogenics                       2025 年 5 月



                                可   集   成  真   空   微   纳  电   子   器   件   发  展   与   展   望



                                         韩熙隆 ,覃奀垚 ,章灿然 ,陶 晖               1,3 ,王琦龙   1*
                                                1
                                                                 1
                                                         2
                                      (1. 东南大学  电子科学与工程学院 ,南京 211102;
                2. 昆山国力电子科技股份有限公司,江苏 昆山 215300;3. 南京三乐集团有限公司,南京 211800)

                     摘要:真空微纳电子器件(VMNEDs)凭借其高速运行、耐高温、抗辐射及极端环境适应性等独特优势,已成为
                  极端环境电子学领域的研究热点。本文系统综述了真空微纳电子器件的发展历程、理论基础、技术进展及未来
                  前景,重点探讨其作为传统真空管与固态器件桥梁作用的潜力。将                        VMNEDs 与微机电系统(MEMS)和光子电路
                  集成,有望推动航空航天、能源与量子技术领域的多功能高可靠性系统发展。结合理论见解与实验成果,提出了
                  面向极端环境的新一代电子器件的技术路线图。
                     关键词:真空微纳电子器件;场发射;纳米沟道;弹道输运;真空电子学
                     中图分类号:TB71                      文献标志码:A       文章编号:1006−7086(2025)03−0302−13
                     DOI:10.12446/j.issn.1006-7086.2025.03.003

                         Development and Prospects of Scalable Vacuum Micro-nanoscale Electronic Devices


                                            1         2             1        1,3           1*
                                 HAN Xilong ,QIN Enyao ,ZHANG Canran ,TAO Hui ,WANG Qilong
                         (1. School of Electronic Science and Technology,Southeast University,Nanjing 211102,China;
                            2. Kunshan GLVAC Electronic Technology Co.,Ltd.,Kunshan 215300,Jiangsu,China;
                                       3. Nanjing Sanle Group Co.,Ltd.,Nanjing 211800,China)


                     Abstract: Vacuum micro-nanoscale electronic devices (VMNEDs), a class of emerging devices combining vacuum
                  electronics with nanotechnology,have garnered significant attention for their excellent high-speed performance,high-temper-
                  ature tolerance,radiation resistance,and extreme-environment compatibility. This review systematically analyzes the evolu-
                  tion,theoretical frameworks,technological breakthroughs,and future trajectories of VMNEDs,highlighting their potential to
                  merge  traditional  vacuum  tube  advantages  with  solid-state  device  miniaturization.  Leveraging  field  emission  theory  and
                  nanoscale vacuum channel designs,VMNEDs enable ballistic electron transport under atmospheric pressure,achieving low-
                  voltage operation (below 10 V) and ultrahigh-frequency responses (cutoff frequencies up to 0.46 THz). Structural innova-
                  tions,categorized into planar and vertical architectures,exhibit distinct merits: planar devices (e.g.,coplanar graphene-based
                  transistors)  achieve  sub-120  mV/dec  subthreshold  swing  and  CMOS  compatibility, while  vertical  configurations  (e.g.,
                  Spindt cathodes, internal/external channel structures) deliver high current densities (>3 000 A/cm²) and robust stability at
                  600 ℃ or under 30 krad radiation. Material advancements further drive performance: selectively etched metallic nanotips
                  achieve field enhancement factors exceeding 6 000,wide-bandgap semiconductors (SiC,GaN) integrate low electron affini-
                  ty with intrinsic radiation hardness,and low-dimensional materials (carbon nanotubes,graphene) optimize emission efficiency
                  through surface functionalization of work functions. Despite progress,challenges remain in process uniformity,long-term reli-
                  ability (e.g.,tip degradation,material oxidation),and CMOS integration. Recent nanofabrication breakthroughs,such as um-
                  brella-shaped cathodes and vertical air-bridge structures,have improved current density and switching speeds. Experimental
                                                       14
                                                            2
                  validation under extreme conditions(including 1×10  n/cm  neutron irradiation and >500 ℃ operation)confirms VMNED re-
                  silience,positioning them for space applications. Emerging uses span high-frequency communication,deep-space ion propul-


              收稿日期:2025−03−03
              基金项目:国家自然科学基金(92364108)
              作者简介:韩熙隆,硕士研究生。E-mail:220231770@seu.edu.cn
              通信作者:王琦龙,博士,教授。E-mail:northrockwql@seu.edu.cn
   26   27   28   29   30   31   32   33   34   35   36