Page 29 - 《真空与低温》2025年第3期
P. 29

300                                         真空与低温                                   第 31 卷 第  3  期


                     0.8                                           channel transistor[J]. Applied Physics Letters,2012,100(21):
                             V a =28 V
                     0.7                                           213505.
                             V a =29 V
                             V a =30 V    ΔI a-CC               [2]   ROSE D L B,JONES W M,SCHERER A. Lateral nanoscale
                     0.6                                           field emission comb for frequency mixing[J]. Applied Phy-
                    阳极电流/mA  0.5  ΔI a-CG                          sics Letters,2023,123(1):013505.

                     0.4

                                                                   channel transistors fabricated on silicon carbide wafers[J]. Na-
                     0.3                           ΔV g         [3]   HAN J W,SEOL M L,MOON D I,et al. Nanoscale vacuum
                     0.2                                           ture Electronics,2019,2(9):405−411.
                       −6  −4  −2  0  2   4   6  8  10          [4]   FAN L,ZHAO B,CHEN B,et al. Radiation immune-planar
                                    栅极电压/V                         two-terminal nanoscale air channel devices toward space ap-
                                                                   plications[J].  ACS  Appled  Nano  Materials, 2023, 6(23):
                  图  10 改进后的背栅型纳米真空沟道晶体管阵列的
                                转移特性曲线                             22080−22087.
               Fig. 10 Transfer characteristics curve of improved back-gate  [5]   STONER B R,GLASS J T. Nothing is like a vacuum[J]. Na-
                      nanoscale vacuum channel transistor array    ture Nanotechnology,2012,7(8):485−487.

                                                                [6]   HEER D W A,CHâTELAIN A,UGARTE D. A carbon nan-
              3 总结
                                                                   otube  field-emission  electron  source[J].  Science, 1995, 270
                  本文通过阵列化设计有效提升了单个纳米真                              (5239):1179−1180.
              空沟道晶体管(NVCT)器件的电流输出,并研究了                          [7]   SRISONPHAN S,JUNG Y S,KIM H K. Metal-oxide-semi-
              阴极尖端间距、栅极介电层厚度与材料对器件性                                conductor  field-effect  transistor  with  a  vacuum  channel[J].
              能的影响。研究表明,阴极尖端间距对发射电流及                               Nature Nanotechnology,2012,7(8):504−508.
              电场分布具有决定性作用,而栅极材料和介电层厚                            [8]   HAN J W,MOON D I,SUB O J,et al. Vacuum gate dielectric
              度直接影响器件的跨导特性及高频响应。探讨了                                gate-all-around  nanowire  for  hot  carrier  injection  and  bias
              采用高介电常数(High-k)材料(如             HfO 2 、Al 2 O 3 )作   temperature instability free transistor[J]. Applied Physics Let-
              为栅极介电层的优缺点,重点分析了其在栅极-阴                               ters,2014,104(25):253506.
              极电容与高频响应间的平衡问题。                                   [9]   WU G,WEI X,ZHANG Z,et al. A graphene-based vacuum
                  此外,本文结合纳米真空沟道晶体管的工作机                             transistor with a high on/off current ratio[J]. Advanced Func-
              制,参考固态器件的交流小信号等效电路模型的分                               tional Materials,2015,25(37):5972−5978.
              析思路,提出了两种基于纳米真空沟道晶体管的高                            [10]   HAN J W,MOON D I,MEYYAPPAN M. Nanoscale vacu-
              频小信号等效电路模型:共阴极高频小信号等效电                                um channel transistor[J]. Nano Letters,2017,17(4):2146−
              路模型与共栅极高频小信号等效电路模型。通过                                 2151.
              模拟对比了这两种模型在输出电流特性上的差异。                            [11]   XU J,GU Z,YANG W,et al. Graphene-based nanoscale
              结果显示,在相同的直流偏置条件下,共栅极高频                                vacuum  channel  transistor[J].  Nanoscale  research  letters,
              小信号等效电路模型相较于共阴极高频小信号等                                 2018,13(1):311.
              效电路模型,能够对输出电流实现高效的调控。                             [12]   XU J,SHI Y T,SHI Y J,et al. Study on electrical proper-
                  尽管阵列化设计显著提升了               NVCT  的电流输             ties and structure optimization of side-gate nanoscale vacu-
              出性能,但阴极尖端间距和栅极介电层材料的进一                                um  channel  transistor[J].  Journal  of  Physics  D: Applied
              步优化仍有较大提升空间。未来的研究可以聚焦                                 Physics,2020,53(13):135301.
              于器件结构设计的精细优化,材料的进一步筛选与                            [13]   XU J,HU H,YANG W,et al. Nanoscale vacuum channel
              改良,以及通过实验验证提升理论模型的准确性,                                transistor with in-plane collection structure[J]. Nanotechno-
              从而推动该技术在下一代电子器件中的广泛应用。                                logy,2020,31(6):065202.

                                                                [14]   SAPKOTA  K  R, LEONARD  F, TALIN  A  A, et  al.  Ul-
              参考文献:
                                                                    tralow voltage gan vacuum nanodiodes in air[J]. Nano Let-
              [1]   HAN  J  W, OH  J  S, MEYYAPPAN  M.  Vacuum  nanoelec-  ters,2021,21(5):1928−1934.
                 tronics:Back to the future?—Gate insulated nanoscale vacuum  [15]   NIRANTAR S,PATIL B,TRIPATHI D C,et al. Metal-air
   24   25   26   27   28   29   30   31   32   33   34