Page 29 - 《真空与低温》2025年第3期
P. 29
300 真空与低温 第 31 卷 第 3 期
0.8 channel transistor[J]. Applied Physics Letters,2012,100(21):
V a =28 V
0.7 213505.
V a =29 V
V a =30 V ΔI a-CC [2] ROSE D L B,JONES W M,SCHERER A. Lateral nanoscale
0.6 field emission comb for frequency mixing[J]. Applied Phy-
阳极电流/mA 0.5 ΔI a-CG sics Letters,2023,123(1):013505.
0.4
channel transistors fabricated on silicon carbide wafers[J]. Na-
0.3 ΔV g [3] HAN J W,SEOL M L,MOON D I,et al. Nanoscale vacuum
0.2 ture Electronics,2019,2(9):405−411.
−6 −4 −2 0 2 4 6 8 10 [4] FAN L,ZHAO B,CHEN B,et al. Radiation immune-planar
栅极电压/V two-terminal nanoscale air channel devices toward space ap-
plications[J]. ACS Appled Nano Materials, 2023, 6(23):
图 10 改进后的背栅型纳米真空沟道晶体管阵列的
转移特性曲线 22080−22087.
Fig. 10 Transfer characteristics curve of improved back-gate [5] STONER B R,GLASS J T. Nothing is like a vacuum[J]. Na-
nanoscale vacuum channel transistor array ture Nanotechnology,2012,7(8):485−487.
[6] HEER D W A,CHâTELAIN A,UGARTE D. A carbon nan-
3 总结
otube field-emission electron source[J]. Science, 1995, 270
本文通过阵列化设计有效提升了单个纳米真 (5239):1179−1180.
空沟道晶体管(NVCT)器件的电流输出,并研究了 [7] SRISONPHAN S,JUNG Y S,KIM H K. Metal-oxide-semi-
阴极尖端间距、栅极介电层厚度与材料对器件性 conductor field-effect transistor with a vacuum channel[J].
能的影响。研究表明,阴极尖端间距对发射电流及 Nature Nanotechnology,2012,7(8):504−508.
电场分布具有决定性作用,而栅极材料和介电层厚 [8] HAN J W,MOON D I,SUB O J,et al. Vacuum gate dielectric
度直接影响器件的跨导特性及高频响应。探讨了 gate-all-around nanowire for hot carrier injection and bias
采用高介电常数(High-k)材料(如 HfO 2 、Al 2 O 3 )作 temperature instability free transistor[J]. Applied Physics Let-
为栅极介电层的优缺点,重点分析了其在栅极-阴 ters,2014,104(25):253506.
极电容与高频响应间的平衡问题。 [9] WU G,WEI X,ZHANG Z,et al. A graphene-based vacuum
此外,本文结合纳米真空沟道晶体管的工作机 transistor with a high on/off current ratio[J]. Advanced Func-
制,参考固态器件的交流小信号等效电路模型的分 tional Materials,2015,25(37):5972−5978.
析思路,提出了两种基于纳米真空沟道晶体管的高 [10] HAN J W,MOON D I,MEYYAPPAN M. Nanoscale vacu-
频小信号等效电路模型:共阴极高频小信号等效电 um channel transistor[J]. Nano Letters,2017,17(4):2146−
路模型与共栅极高频小信号等效电路模型。通过 2151.
模拟对比了这两种模型在输出电流特性上的差异。 [11] XU J,GU Z,YANG W,et al. Graphene-based nanoscale
结果显示,在相同的直流偏置条件下,共栅极高频 vacuum channel transistor[J]. Nanoscale research letters,
小信号等效电路模型相较于共阴极高频小信号等 2018,13(1):311.
效电路模型,能够对输出电流实现高效的调控。 [12] XU J,SHI Y T,SHI Y J,et al. Study on electrical proper-
尽管阵列化设计显著提升了 NVCT 的电流输 ties and structure optimization of side-gate nanoscale vacu-
出性能,但阴极尖端间距和栅极介电层材料的进一 um channel transistor[J]. Journal of Physics D: Applied
步优化仍有较大提升空间。未来的研究可以聚焦 Physics,2020,53(13):135301.
于器件结构设计的精细优化,材料的进一步筛选与 [13] XU J,HU H,YANG W,et al. Nanoscale vacuum channel
改良,以及通过实验验证提升理论模型的准确性, transistor with in-plane collection structure[J]. Nanotechno-
从而推动该技术在下一代电子器件中的广泛应用。 logy,2020,31(6):065202.
[14] SAPKOTA K R, LEONARD F, TALIN A A, et al. Ul-
参考文献:
tralow voltage gan vacuum nanodiodes in air[J]. Nano Let-
[1] HAN J W, OH J S, MEYYAPPAN M. Vacuum nanoelec- ters,2021,21(5):1928−1934.
tronics:Back to the future?—Gate insulated nanoscale vacuum [15] NIRANTAR S,PATIL B,TRIPATHI D C,et al. Metal-air