Page 132 - 《真空与低温》2025年第3期
P. 132

刘丰源等:适用于微聚焦         X  射线源的微纳结构阳极钼靶热管理:热失稳机制及解决策略                            403


                                          [24]
              优异的导热系数(401 W/(m∙K) )。不考虑接触热                         medical X-ray imaging[J]. Analytical Chemistry,2023,95(1):
              阻时的计算结果,如图           4(d)所示,微纳结构钼靶能                  33−48.
              在亚微秒级内将靶材温度迅速降至                  400 K  以下,降      [4]   SAKURAI  H, SUZUKI  K, ISHII  S, et  al.  Development  of
                                        7
                               6
              温速率可达       4.7×10 ~3.9×10  K/ms(图中虚线),这             non-destructive  testing  (NDT)  technique  for  HIPed  inter-
              比仅依靠环境辐射的平均降温速率(图中实线,                                face  by  Compton  scattering  X-ray  spectroscopy[J].  Nuclear
              14.6~19 K/ms)提高了数个数量级,图中灰线为平                         Materials and Energy,2022,31:101171.
              均降温速率的计算区间,彩色实线为仅对应环境热                            [5]   DYUZHEV N A,DEMIN G D,GRYAZNEVA T A,et al.
              辐射的情况,彩色虚线为对环境辐射的同时伴有接                               Microfocus X-ray tubes with a silicon autoemission nanoca-
              触热传导散热的情况。                                           thode as an X-ray source[J]. Bulletin of the Lebedev Physics
                  上述数值分析结果表明,这种旋转式散热系统                             Institute,2018,45:1−5.
                                                       2
              能使微纳结构阳极靶承受高达               282.28 mA/cm 的电       [6]   FRYDRYCH  A, JUROWSKI  K.  Portable  X-ray  fluores-
              子束电流密度(图        4(e)),同时可保证靶材的工作温                    cence (pXRF) as a powerful and trending analytical tool for
              度始终低于      2 000 K。这比    0.9 μm  厚度微纳结构旋             in situ food samples analysis:A comprehensive review of ap-
              转钼靶的电流承载能力(97.7 mA/cm )显著提高,更                        plication  -  state  of  the  art[J].  TrAC  Trends  in  Analytical
                                               2
                                                                   Chemistry,2023,166:117165.
              相比单个微纳结构靶材的电流承载能力(见图                      2(c),
              约为   6.35 mA/cm )提升了约     44.45 倍。这意味着改           [7]   HALLS B R,GORD J R,SCHULTZ L E,et al. Quantitative
                             2
              进后的散热方案可提供更高的                X  射线辐射剂量及              10-50 kHz X-ray radiography of liquid spray distributions us-
              亮度。                                                  ing a rotating-anode tube source[J]. International Journal of

                                                                   Multiphase Flow,2018,109:123−130.
              3 结论
                                                                [8]   LI X,WANG X,LI Y,et al. Production and heat properties
                  本研究针对透射式          X  射线用的微纳结构阳极                  of an X-ray reflective anode based on a diamond heat buffer
              钼靶材在高能电子束轰击下的极端工况,建立了热                               layer[J]. Materials,2020,13(1):241.
              响应行为分析模型并开展了数值模拟。通过优化                             [9]   LIN C H,WU C H,HSIAO C Y,et al. Physical characteris-
              几何参数,确定了圆柱形微纳结构钼靶材                     1 μm  直       tics of the novel transmission-target X-ray equipment for kilo-
              径、2.6 μm  厚度的最佳尺寸,在保持高亮度、高空                          voltage  radiation  therapy  applications[J].  Radiation  Physics
                                                2
              间聚焦性的同时,可承受            14.14 mA/cm 的电子束电             and Chemistry,2022,197:110182.
              流密度。提出了改进的散热方案:采用旋转式组合                            [10]   AVACHAT A V,TUCKER W W,GIRALDO C H C,et al.
              靶结构,在靶材不受电子束轰击期间提供充分的散                                Looking inside a prototype compact X-ray tube comprising
                                                         2
              热时间。研究结果表明:该设计在                  100 mA/cm 的          CNT-Based  cold  cathode  and  transmission-type  anode[J].
              电流密度下仅通过辐射散热即可保持热稳定;而在                                Radiation Research,2020,193(5):497−504.
              进一步引入接触传热方式后,可承受                 282.28 mA/cm 2   [11]   IHSAN A,HEO S H,CHO S O. A microfocus X-ray tube
              电流密度的       40 keV  电子束轰击,较优化前的单个                     based on a microstructured X-ray target[J]. Nuclear Instru-
              微纳结构钼靶提升了           44.45 倍。研究结果揭示了微                  ments  and  Methods  in  Physics  Research  Section  B-Beam
              纳结构钼靶的热失稳机理,并提出了有效的热管理                                Interactions  with  Materials  and  Atoms, 2009, 267: 3566−
              策略,为高性能微聚焦            X  射线源的开发提供了新                   3573.
              思路。                                               [12]   SHEN Y,LIU F,DENG S,et al. An anodic target develop-

                                                                    ing strategy for micro-focal X-rays:Enhancing and tuning
              参考文献:
                                                                    effects of molybdenum nanostructures on radiation proper-
              [1]   WITTE  M.  Measurement  of  coating  thickness  with  X-ray  ties[EB/OL]. [2024−10−20]. https://ssrn.com/abstract=4928
                 diffraction[J]. Powder Diffraction,2023,38(2):112−118.  102.
              [2]   TAN W L,MCNEILL C R. X-ray diffraction of photovolta-  [13]   ZHOU R,ZHOU X,LI X,et al. Study of the microfocus X-
                 ic perovskites:Principles and applications[J]. Applied Physics  ray tube based on a point-like target used for micro-comput-
                 Reviews,2022,9(2):1−82.                            ed tomography[J]. PLoS ONE,2016,11(6):1−12.
              [3]   WU  Q, ZHENG  Q, HE  Y, et  al.  Emerging  nanoagents  for  [14]   HUBBELL J H,SELTZER S M. Tables of X-ray mass at-
   127   128   129   130   131   132   133   134   135   136   137