Page 132 - 《真空与低温》2025年第3期
P. 132
刘丰源等:适用于微聚焦 X 射线源的微纳结构阳极钼靶热管理:热失稳机制及解决策略 403
[24]
优异的导热系数(401 W/(m∙K) )。不考虑接触热 medical X-ray imaging[J]. Analytical Chemistry,2023,95(1):
阻时的计算结果,如图 4(d)所示,微纳结构钼靶能 33−48.
在亚微秒级内将靶材温度迅速降至 400 K 以下,降 [4] SAKURAI H, SUZUKI K, ISHII S, et al. Development of
7
6
温速率可达 4.7×10 ~3.9×10 K/ms(图中虚线),这 non-destructive testing (NDT) technique for HIPed inter-
比仅依靠环境辐射的平均降温速率(图中实线, face by Compton scattering X-ray spectroscopy[J]. Nuclear
14.6~19 K/ms)提高了数个数量级,图中灰线为平 Materials and Energy,2022,31:101171.
均降温速率的计算区间,彩色实线为仅对应环境热 [5] DYUZHEV N A,DEMIN G D,GRYAZNEVA T A,et al.
辐射的情况,彩色虚线为对环境辐射的同时伴有接 Microfocus X-ray tubes with a silicon autoemission nanoca-
触热传导散热的情况。 thode as an X-ray source[J]. Bulletin of the Lebedev Physics
上述数值分析结果表明,这种旋转式散热系统 Institute,2018,45:1−5.
2
能使微纳结构阳极靶承受高达 282.28 mA/cm 的电 [6] FRYDRYCH A, JUROWSKI K. Portable X-ray fluores-
子束电流密度(图 4(e)),同时可保证靶材的工作温 cence (pXRF) as a powerful and trending analytical tool for
度始终低于 2 000 K。这比 0.9 μm 厚度微纳结构旋 in situ food samples analysis:A comprehensive review of ap-
转钼靶的电流承载能力(97.7 mA/cm )显著提高,更 plication - state of the art[J]. TrAC Trends in Analytical
2
Chemistry,2023,166:117165.
相比单个微纳结构靶材的电流承载能力(见图 2(c),
约为 6.35 mA/cm )提升了约 44.45 倍。这意味着改 [7] HALLS B R,GORD J R,SCHULTZ L E,et al. Quantitative
2
进后的散热方案可提供更高的 X 射线辐射剂量及 10-50 kHz X-ray radiography of liquid spray distributions us-
亮度。 ing a rotating-anode tube source[J]. International Journal of
Multiphase Flow,2018,109:123−130.
3 结论
[8] LI X,WANG X,LI Y,et al. Production and heat properties
本研究针对透射式 X 射线用的微纳结构阳极 of an X-ray reflective anode based on a diamond heat buffer
钼靶材在高能电子束轰击下的极端工况,建立了热 layer[J]. Materials,2020,13(1):241.
响应行为分析模型并开展了数值模拟。通过优化 [9] LIN C H,WU C H,HSIAO C Y,et al. Physical characteris-
几何参数,确定了圆柱形微纳结构钼靶材 1 μm 直 tics of the novel transmission-target X-ray equipment for kilo-
径、2.6 μm 厚度的最佳尺寸,在保持高亮度、高空 voltage radiation therapy applications[J]. Radiation Physics
2
间聚焦性的同时,可承受 14.14 mA/cm 的电子束电 and Chemistry,2022,197:110182.
流密度。提出了改进的散热方案:采用旋转式组合 [10] AVACHAT A V,TUCKER W W,GIRALDO C H C,et al.
靶结构,在靶材不受电子束轰击期间提供充分的散 Looking inside a prototype compact X-ray tube comprising
2
热时间。研究结果表明:该设计在 100 mA/cm 的 CNT-Based cold cathode and transmission-type anode[J].
电流密度下仅通过辐射散热即可保持热稳定;而在 Radiation Research,2020,193(5):497−504.
进一步引入接触传热方式后,可承受 282.28 mA/cm 2 [11] IHSAN A,HEO S H,CHO S O. A microfocus X-ray tube
电流密度的 40 keV 电子束轰击,较优化前的单个 based on a microstructured X-ray target[J]. Nuclear Instru-
微纳结构钼靶提升了 44.45 倍。研究结果揭示了微 ments and Methods in Physics Research Section B-Beam
纳结构钼靶的热失稳机理,并提出了有效的热管理 Interactions with Materials and Atoms, 2009, 267: 3566−
策略,为高性能微聚焦 X 射线源的开发提供了新 3573.
思路。 [12] SHEN Y,LIU F,DENG S,et al. An anodic target develop-
ing strategy for micro-focal X-rays:Enhancing and tuning
参考文献:
effects of molybdenum nanostructures on radiation proper-
[1] WITTE M. Measurement of coating thickness with X-ray ties[EB/OL]. [2024−10−20]. https://ssrn.com/abstract=4928
diffraction[J]. Powder Diffraction,2023,38(2):112−118. 102.
[2] TAN W L,MCNEILL C R. X-ray diffraction of photovolta- [13] ZHOU R,ZHOU X,LI X,et al. Study of the microfocus X-
ic perovskites:Principles and applications[J]. Applied Physics ray tube based on a point-like target used for micro-comput-
Reviews,2022,9(2):1−82. ed tomography[J]. PLoS ONE,2016,11(6):1−12.
[3] WU Q, ZHENG Q, HE Y, et al. Emerging nanoagents for [14] HUBBELL J H,SELTZER S M. Tables of X-ray mass at-