Page 134 - 《真空与低温》2025年第3期
P. 134

第  31 卷    第  3 期                          真空与低温
                 2025 年 5 月                           Vacuum and Cryogenics                                405



                        基   于   PIC-MCC         方  法   的   溅   射  离   子   泵   抽   速  计   算   方   法



                                                王耀之,刘奕新,张华鹏,张志军
                                      (东北大学  机械工程与自动化学院,沈阳 110004)


                     摘要:基于溅射离子泵潘宁放电单元的实际工作条件,采用                     PIC-MCC  方法建立了相应的仿真模型,并利用开
                  源代码   picFoam  对单个潘宁放电单元进行了模拟分析。结合仿真结果与现有理论,通过计算离子入射参数,得到
                  了溅射出的钛原子数量,并进一步结合阳极筒参数计算单个潘宁放电单元的抽速和溅射离子泵的整体抽速。分
                  析了不同工作压力下离子的入射位置、入射能量及入射角度的分布规律,计算了单个潘宁放电单元的抽速。最终,
                  基于阳极筒的排列方式得出溅射离子泵的整体抽速,计算结果与理论值对比显示出良好的一致性。
                     关键词:溅射离子泵;PIC-MCC        方法;潘宁放电;入射参数;抽速计算
                     中图分类号:TB752                     文献标志码:A       文章编号:1006−7086(2025)03−0405−07
                     DOI:10.12446/j.issn.1006-7086.2025.03.017


                       Calculation Method of Sputtering Ion Pump Pumping Speed Based on PIC-MCC Method

                                      WANG Yaozhi,LIU Yixin,ZHANG Huapeng,ZHANG Zhijun
                      (School of Mechanical Engineering & Automation,Northeastren University,Shenyang 110004,China)


                     Abstract:Based on the actual operational conditions of the sputtering ion pump's Penning discharge unit,a correspond-
                  ing simulation model was established by utilizing the PIC-MCC (Particle-In-Cell Monte Carlo Collision) method. The PIC-
                  MCC method is a powerful numerical approach. The Article-In-Cell part enables accurate tracking of charged particles' tra-
                  jectories in electromagnetic fields,while the Monte Carlo collision part effectively simulates various collision processes be-
                  tween particles,such as elastic and inelastic collisions. After establishing the simulation model using the PIC-MCC method,
                  the open-source code picFoam was employed to perform simulations on a single Penning discharge unit. Through a series of
                  simulations,a large amount of data on ion incident parameters was collected. These parameters included ion velocity,direc-
                  tion, and position.Integrating these simulation results with well-established theoretical frameworks in the field of vacuum
                  physics,the number of sputtered titanium atoms was accurately calculated. Furthermore,by taking into account the geomet-
                  ric and physical parameters of the anode cylinder, which has a significant impact on the electric field distribution and ion
                  movement within the discharge unit,the pumping speed of a single Penning discharge unit and the overall pumping speed of
                  the sputtering ion pump were computed. In addition,a detailed analysis was carried out on the distribution patterns of ion in-
                  cidence positions,incident energies,and incident angles under different working pressures. These analyses revealed the influ-
                  ence of pressure on the performance of the Penning discharge unit. The results demonstrated that the computed values of the
                  pumping speed of a single Penning discharge unit and the overall pumping speed of the sputtering ion pump were in excel-
                  lent agreement with the theoretical values. This research not only provides a more in-depth understanding of the sputtering
                  ion pump's working mechanism but also offers practical guidelines for the design and optimization of sputtering ion pumps.
                     Key words:sputter-ion pump;PIC-MCC method;Penning discharge;incident parameters;pumping speed calculation



              0 引言                                              自  1958 年  Hall 完成了对溅射离子泵的改良后,溅
                  溅射离子泵是一种气体捕集类真空获得设备。                          射离子泵由单筒结构,改为了多筒结构,抽气性能


              收稿日期:2024−11−04
              基金项目:国家自然科学基金 (U20A20292);中国航空工业空气动力研究院高超声速气动力与热技术重点实验室基金;
                      中国科学院环境光学与技术重点实验室开放基金(2005DP173065-2022-02)
              作者简介:王耀之,硕士研究生。E-mail:275244767@qq.com
   129   130   131   132   133   134   135   136   137   138   139