Page 200 - 卫星导航2021年第1-2合期
P. 200
Li et al. Satell Navig (2021) 2:1 Page 14 of 14
Qin, T., Cao, S., Pan, J., & Shen, S. (2019). A general optimization-based framework Usenko, V., Engel, J., Stückler, J., & D. Cremers. (2016). Direct visual-inertial
for global pose estimation with multiple sensors. arXiv :1901.03642 . odometry with stereo cameras. In Proceedings of the IEEE international
Qin, T., Li, P., & Shen, S. (2018). VINS-Mono: A robust and versatile monocu- conference on robotics and automation (pp. 1885–1892).
lar visual-inertial state estimator. IEEE Transactions on Robotics, 34(4), Vu, A., Ramanandan, A., Chen, A., Farrell, J. A., & Barth, M. (2012). Real-time
1004–1020. computer vision/DGPS-aided inertial navigation system for lane-level
Rabbou, M. A., & El-Rabbany, A. (2015). Integration of multi-constellation GNSS vehicle navigation. IEEE Transactions on Intelligent Transportation Systems,
precise point positioning and MEMS-based inertial systems using tightly 3(2), 899–913.
coupled mechanization. Positioning, 6(4), 81. Weiss, S., Achtelik, M., Lynen, S., Chli, M. & Siegwart, R. (2012). Real-time
Roesler, G., & Martell, H. (2009). Tightly coupled processing of precise point onboard visual-inertial state estimation and self-calibration of MAVs in
position (PPP) and INS data. In Proceedings of the ION GPS/GNSS 2009, unknown environments. In Proceedings of the IEEE international conference
Institute of Navigation (pp. 1898–1905). on robotics and automation (pp. 957–964).
Saastamoinen, J. (1972). Atmospheric correction for the troposphere and Wu, J. T., Wu, S. C., Hajj, G. A., Bertiger, W. I., & Lichten, S. M. (1993). Efects of
stratosphere in radio ranging satellites. The Use of Artifcial Satellites for antenna orientation on GPS carrier phase. Manuscripta Geodaetica, 18,
Geodesy, 15, 247–251. 91–98.
Schmid, R., Steigenberger, P., Gendt, G., Ge, M., & Rothacher, M. (2007). Genera- Yang, Z., & Shen, S. (2017). Monocular visual–inertial state estimation with
tion of a consistent absolute phase-center correction model for GPS online initialization and camera–IMU extrinsic calibration. In Proceedings
receiver and satellite antennas. Jouranl of Geodesy, 81(12), 781–798. of the IEEE transactions on automation science and engineering (pp. 39–51).
Septentrio Corporation. (2019). PolaRx5 product datasheet. https ://www.septe Zhang, X., & Li, X. (2012). Instantaneous re-initialization in real-time kinematic
ntrio .com/en/produ cts/gnss-recei vers/refer ence-recei vers/polar x-5. PPP with cycle slip fxing. GPS Solutions, 16(3), 315–327.
Accessed 1 July 2020. Zhu, F. (2019). GNSS/SINS/vision multi-sensors integration for precise positioning
Shi, J., & Tomasi, C. (1994). Good Features to Track. In Proceedings of the IEEE and orientation determination. Ph.D. thesis, Wuhan University.
Conference on Computer Vision & Pattern Recognition (pp. 593–600). Zumberge, J. F., Hefin, M. B., Jeferson, D. C., Watkins, M. M., & Webb, F. H.
Shin, E., & Scherzinger, B. (2009). Inertially aided precise point positioning. In (1997). Precise point positioning for the efcient and robust analysis of
Proceedings of ION GNSS 2009 (pp. 1892–1897). GPS data from large networks. Journal of Geophysical Research: Solid Earth,
Tsotsos, K., Chiuso, A., & Soatto, S. (2015). Robust inference for visual-inertial 102(B3), 5005–5017.
sensor fusion. In Proceedings of the IEEE international conference on robotics
and automation (pp. 5203–5210).