Page 199 - 卫星导航2021年第1-2合期
P. 199
Li et al. Satell Navig (2021) 2:1 Page 13 of 14
aiding of S-VINS. Meanwhile, the multi-GNSS PPP/S- Ge, M., Gendt, G., Rothacher, M., Shi, C., & Liu, J. (2008). Resolution of GPS
VINS solution realizes a higher positioning accuracy carrier-phase ambiguities in precise point positioning (PPP) with daily
observations. Journal of Geodesy, 82(7), 389–399.
and availability compared with the multi-GNSS PPP/ Gendt, G., Dick, G., Reigber, C. H., Tomassini, M., Liu, Y., & Ramatschi, M. (2003).
INS solutions in GNSS-challenged environments, Demonstration of NRT GPS water vapor monitoring for numerical
which shows a great potential of the multi-sensor weather prediction in Germany. Journal of the Meteorological Society of
Japan, 82(1B), 360–370.
fusion system for precise positioning. Geng, J., & Guo, J. (2020). Beyond three frequencies: an extendable model for
single-epoch decimeter-level point positioning by exploiting Galileo and
Acknowledgements BeiDou-3 signals. Journal of Geodesy, 94(1), 14.
The numerical calculations in this paper was done on the supercomputing Guo, J., Li, X., Li, Z., Hu, L., Yang, G., Zhao, C., et al. (2018). Multi-GNSS precise
system in the Supercomputing Center of Wuhan University. point positioning for precision agriculture. Precision Agriculture, 19,
895–911.
Authors’ contributions Horn, B. (1987). Closed-form solution of absolute orientation using unit quater-
XL conceived the idea and revised the paper; XW analyzed the data and wrote nions. Journal of the Optical Society of America A, 4(4), 629–642.
the paper; JL and SL assisted in data acquisition and article revision; XL and HL Huber, P. (1964). Robust estimation of a location parameter. Annals of Math-
helped with the writing. All authors read and approved the fnal manuscript. ematical Statistics, 35(2), 73–101.
Lepetit, V., Moreno-Noguer, F., & Fua, P. (2009). Epnp: an accurate o(n) solu-
Funding tion to the pnp problem. International Journal of Computer Vision, 81(2),
This study is fnancially supported by the National Natural Science Foundation 155–166.
of China (Grant No. 41774030, Grant 41974027), the Hubei Province Natural Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., & Furgale, P. (2015). Keyframe-
Science Foundation of China (Grant No. 2018CFA081), the National Youth based visual-inertial odometry using nonlinear optimization. The Interna-
Thousand Talents Program, the frontier project of basic application from tional Journal of Robotics Research, 34(3), 314–334.
Wuhan science and technology bureau (Grant No. 2019010701011395), and Li, M. & Mourikis, A. I. (2012). Improving the accuracy of EKF-based visual-
the Sino-German mobility programme (Grant No. M-0054). inertial odometry. In Proceedings of the IEEE international conference on
robotics and automation (pp. 828–835).
Availability of data and materials Li, T., Zhang, H., Gao, Z., Niu, X., & El-Sheimy, N. (2019b). Tight fusion of a
The datasets used and analysed in this study are available from the corre- monocular camera, MEMS-IMU, and single-frequency multi-GNSS RTK for
sponding author on reasonable request. precise navigation in GNSS-challenged environments. Remote Sensing,
11(6), 610.
Competing interests Li, X., Li, X., Liu, G., Feng, G., Yuan, Y., Zhang, K., et al. (2019a). Triple-frequency
The authors declare that they have no competing interests. PPP ambiguity resolution with multi-constellation GNSS: BDS and Galileo.
Jouranl of Geodesy, 93(8), 1105–1122.
Received: 17 July 2020 Accepted: 1 December 2020 Li, X., Li, X., Liu, G., Xie, W., & Feng, G. (2020a). The phase and code biases of
Galileo and BDS-3 BOC signals: efect on ambiguity resolution and pre-
cise positioning. Journal of Geodesy, 94(1), 9.
Li, X., Liu, G., Li, X., Zhou, F., Feng, G., Yuan, Y., et al. (2020b). Galileo PPP rapid
ambiguity resolution with fve-frequency observations. GPS Solutions,
References 24(1), 24.
Agarwal, S., Mierle, K., et al. (2012). Ceres solver. http://ceres -solve r.org. Li, X., Zhang, X., & Ge, M. (2011). Regional reference network augmented
Accessed 1 July 2020. precise point positioning for instantaneous ambiguity resolution. Journal
Alkan, R., & Öcalan, T. (2013). Usability of the GPS precise point position- of Geodesy, 85(3), 151–158.
ing technique in marine applications. The Journal of Navigation, 66, Li, X., Zhang, X., Ren, X., Fritsche, M., Wickert, J., & Schuh, H. (2015). Precise
579–588. positioning with current multi-constellation global navigation satellite
Angrisano, A., Gaglione, S., & Gioia, C. (2013). Performance assessment of systems: GPS, GLONASS: Galileo and BeiDou. Scientifc Reports, 5, 8328.
GPS/GLONASS single point positioning in an urban environment. Acta Lucas, B. D., & Kanade, T. (1981). An iterative image registration technique with
Geodaetica et Geophysica, 48(2), 149–161. an application to stereo vision. In Proceedings of the 7th international joint
Bisnath, S., & Gao, Y. (2009). Current state of precise point positioning and conference on Artifcial intelligence (pp. 24–28).
future prospects and limitations. In Observing our changing earth (pp. Lupton, T., & Sukkarieh, S. (2012). Visual-inertial-aided navigation for high-
615–623). Springer. dynamic motion in built environments without initial conditions. IEEE
Bloesch, M., Omari, S., Hutter, M., & Siegwart, R. (2015). Robust visual inertial Transactions on Robotics, 28(1), 61–76.
odometry using a direct EKF-based approach. In Proceedings of the IEEE/ Lynen, S, Achtelik, M. W., Weiss, S., Chli, M., & Siegwart, R. (2013). A robust and
RSJ international conference on intelligent robots and systems (pp. 298–304). modular multi-sensor fusion approach applied to MAV navigation. In
Cai, C., Gao, Y., Pan, L., & Zhu, J. (2015). Precise point positioning with quad- Proceedings of the IEEE/RSJ international conference on intelligent robots and
constellations: GPS, BeiDou, GLONASS and Galileo. Advances in Space systems (pp. 3923–3929).
Research, 56(1), 133–143. Mascaro, R., Teixeira, L., Hinzmann, T., Siegwart, R., & Chli, M. (2018). GOMSF:
Dach, R., Schaer, S., Arnold, D., Prange, L., Sidorov, D., Susnik, A., et al. (2017). graph-optimization based multi-sensor fusion for robust UAV pose esti-
CODE fnal product series for the IGS. Astronomical Institute, University of mation. In Proceedings of the IEEE international conference on robotics and
Bern, Bern. http://www.aiub.unibe .ch/downl oad/CODE. automation (pp. 1421–1428).
Delmerico, J., & Scaramuzza, D. (2018). A benchmark comparison of monocular Mourikis, A. I. & Roumeliotis, S. I. (2007). A multi-state constraint Kalman flter
visual-inertial odometry algorithms for fying robots. In Proceedings of the for vision-aided inertial navigation. In Proceedings of the IEEE international
IEEE international conference on robotics & automation (pp. 2502–2509). conference on robotics and automation (pp. 3565–3572).
FLIR Corporation. (2019). GS3-U3-28S5M-C Product specifcations. https ://www. Nie, Z., Liu, F., & Gao, Y. (2019). Real-time precise point positioning with a low-
fir.cn/produ cts/grass hoppe r3-usb3/?model =GS3-U3-28S5M -C. Accessed cost dual-frequency GNSS device. GPS Solutions, 24(1), 9.
1 July 2020. NovAtel Corporation. (2015). IMU-FSAS product sheet. https ://novat el.com/
Furgale, P., Rehder, J., & Siegwart, R. (2013). Unifed temporal and spatial cali- suppo rt/suppo rt-mater ials/produ ct-sheet . Accessed 1 July 2020.
bration for multi-sensor systems. In Proceedings of the IEEE/RSJ interna- NovAtel Corporation. (2018a). GrafNav and GrafNet Software Version 8.70
tional conference on intelligent robots and systems (pp. 1280–1286). user manual. https ://novat el.com/suppo rt/suppo rt-mater ials/manua l.
Gao, Z., Zhang, H., Ge, M., Niu, X., Shen, W., Wickert, J., et al. (2017). Tightly Accessed 1 July 2020.
coupled integration of multi-GNSS PPP and MEMS inertial measurement NovAtel Corporation. (2018b). Inertial Explorer 8.70 user manual. https ://novat
unit data. GPS Solutions, 21(2), 377–391. el.com/suppo rt/suppo rt-mater ials/manua l. Accessed 1 July 2020.