Page 199 - 卫星导航2021年第1-2合期
P. 199

Li et al. Satell Navig             (2021) 2:1                                         Page 13 of 14





            aiding of S-VINS. Meanwhile, the multi-GNSS PPP/S-  Ge, M., Gendt, G., Rothacher, M., Shi, C., & Liu, J. (2008). Resolution of GPS
            VINS solution realizes a higher positioning accuracy   carrier-phase ambiguities in precise point positioning (PPP) with daily
                                                                 observations. Journal of Geodesy, 82(7), 389–399.
            and availability compared with the multi-GNSS PPP/  Gendt, G., Dick, G., Reigber, C. H., Tomassini, M., Liu, Y., & Ramatschi, M. (2003).
            INS solutions in GNSS-challenged environments,       Demonstration of NRT GPS water vapor monitoring for numerical
            which shows a great potential of the multi-sensor    weather prediction in Germany. Journal of the Meteorological Society of
                                                                 Japan, 82(1B), 360–370.
            fusion system for precise positioning.            Geng, J., & Guo, J. (2020). Beyond three frequencies: an extendable model for
                                                                 single-epoch decimeter-level point positioning by exploiting Galileo and
            Acknowledgements                                     BeiDou-3 signals. Journal of Geodesy, 94(1), 14.
            The numerical calculations in this paper was done on the supercomputing   Guo, J., Li, X., Li, Z., Hu, L., Yang, G., Zhao, C., et al. (2018). Multi-GNSS precise
            system in the Supercomputing Center of Wuhan University.  point positioning for precision agriculture. Precision Agriculture, 19,
                                                                 895–911.
            Authors’ contributions                            Horn, B. (1987). Closed-form solution of absolute orientation using unit quater-
            XL conceived the idea and revised the paper; XW analyzed the data and wrote   nions. Journal of the Optical Society of America A, 4(4), 629–642.
            the paper; JL and SL assisted in data acquisition and article revision; XL and HL   Huber, P. (1964). Robust estimation of a location parameter. Annals of Math-
            helped with the writing. All authors read and approved the fnal manuscript.  ematical Statistics, 35(2), 73–101.
                                                              Lepetit, V., Moreno-Noguer, F., & Fua, P. (2009). Epnp: an accurate o(n) solu-
            Funding                                              tion to the pnp problem. International Journal of Computer Vision, 81(2),
            This study is fnancially supported by the National Natural Science Foundation   155–166.
            of China (Grant No. 41774030, Grant 41974027), the Hubei Province Natural   Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., & Furgale, P. (2015). Keyframe-
            Science Foundation of China (Grant No. 2018CFA081), the National Youth   based visual-inertial odometry using nonlinear optimization. The Interna-
            Thousand Talents Program, the frontier project of basic application from   tional Journal of Robotics Research, 34(3), 314–334.
            Wuhan science and technology bureau (Grant No. 2019010701011395), and   Li, M. & Mourikis, A. I. (2012). Improving the accuracy of EKF-based visual-
            the Sino-German mobility programme (Grant No. M-0054).  inertial odometry. In Proceedings of the IEEE international conference on
                                                                 robotics and automation (pp. 828–835).
            Availability of data and materials                Li, T., Zhang, H., Gao, Z., Niu, X., & El-Sheimy, N. (2019b). Tight fusion of a
            The datasets used and analysed in this study are available from the corre-  monocular camera, MEMS-IMU, and single-frequency multi-GNSS RTK for
            sponding author on reasonable request.               precise navigation in GNSS-challenged environments. Remote Sensing,
                                                                 11(6), 610.
            Competing interests                               Li, X., Li, X., Liu, G., Feng, G., Yuan, Y., Zhang, K., et al. (2019a). Triple-frequency
            The authors declare that they have no competing interests.  PPP ambiguity resolution with multi-constellation GNSS: BDS and Galileo.
                                                                 Jouranl of Geodesy, 93(8), 1105–1122.
            Received: 17 July 2020   Accepted: 1 December 2020  Li, X., Li, X., Liu, G., Xie, W., & Feng, G. (2020a). The phase and code biases of
                                                                 Galileo and BDS-3 BOC signals: efect on ambiguity resolution and pre-
                                                                 cise positioning. Journal of Geodesy, 94(1), 9.
                                                              Li, X., Liu, G., Li, X., Zhou, F., Feng, G., Yuan, Y., et al. (2020b). Galileo PPP rapid
                                                                 ambiguity resolution with fve-frequency observations. GPS Solutions,
            References                                           24(1), 24.
            Agarwal, S., Mierle, K., et al. (2012). Ceres solver. http://ceres -solve r.org.   Li, X., Zhang, X., & Ge, M. (2011). Regional reference network augmented
               Accessed 1 July 2020.                             precise point positioning for instantaneous ambiguity resolution. Journal
            Alkan, R., & Öcalan, T. (2013). Usability of the GPS precise point position-  of Geodesy, 85(3), 151–158.
               ing technique in marine applications. The Journal of Navigation, 66,   Li, X., Zhang, X., Ren, X., Fritsche, M., Wickert, J., & Schuh, H. (2015). Precise
               579–588.                                          positioning with current multi-constellation global navigation satellite
            Angrisano, A., Gaglione, S., & Gioia, C. (2013). Performance assessment of   systems: GPS, GLONASS: Galileo and BeiDou. Scientifc Reports, 5, 8328.
               GPS/GLONASS single point positioning in an urban environment. Acta   Lucas, B. D., & Kanade, T. (1981). An iterative image registration technique with
               Geodaetica et Geophysica, 48(2), 149–161.         an application to stereo vision. In Proceedings of the 7th international joint
            Bisnath, S., & Gao, Y. (2009). Current state of precise point positioning and   conference on Artifcial intelligence (pp. 24–28).
               future prospects and limitations. In Observing our changing earth (pp.   Lupton, T., & Sukkarieh, S. (2012). Visual-inertial-aided navigation for high-
               615–623). Springer.                               dynamic motion in built environments without initial conditions. IEEE
            Bloesch, M., Omari, S., Hutter, M., & Siegwart, R. (2015). Robust visual inertial   Transactions on Robotics, 28(1), 61–76.
               odometry using a direct EKF-based approach. In Proceedings of the IEEE/  Lynen, S, Achtelik, M. W., Weiss, S., Chli, M., & Siegwart, R. (2013). A robust and
               RSJ international conference on intelligent robots and systems (pp. 298–304).  modular multi-sensor fusion approach applied to MAV navigation. In
            Cai, C., Gao, Y., Pan, L., & Zhu, J. (2015). Precise point positioning with quad-  Proceedings of the IEEE/RSJ international conference on intelligent robots and
               constellations: GPS, BeiDou, GLONASS and Galileo. Advances in Space   systems (pp. 3923–3929).
               Research, 56(1), 133–143.                      Mascaro, R., Teixeira, L., Hinzmann, T., Siegwart, R., & Chli, M. (2018). GOMSF:
            Dach, R., Schaer, S., Arnold, D., Prange, L., Sidorov, D., Susnik, A., et al. (2017).   graph-optimization based multi-sensor fusion for robust UAV pose esti-
               CODE fnal product series for the IGS. Astronomical Institute, University of   mation. In Proceedings of the IEEE international conference on robotics and
               Bern, Bern. http://www.aiub.unibe .ch/downl oad/CODE.  automation (pp. 1421–1428).
            Delmerico, J., & Scaramuzza, D. (2018). A benchmark comparison of monocular   Mourikis, A. I. & Roumeliotis, S. I. (2007). A multi-state constraint Kalman flter
               visual-inertial odometry algorithms for fying robots. In Proceedings of the   for vision-aided inertial navigation. In Proceedings of the IEEE international
               IEEE international conference on robotics & automation (pp. 2502–2509).  conference on robotics and automation (pp. 3565–3572).
            FLIR Corporation. (2019). GS3-U3-28S5M-C Product specifcations. https ://www.  Nie, Z., Liu, F., & Gao, Y. (2019). Real-time precise point positioning with a low-
               fir.cn/produ cts/grass hoppe r3-usb3/?model =GS3-U3-28S5M -C. Accessed   cost dual-frequency GNSS device. GPS Solutions, 24(1), 9.
               1 July 2020.                                   NovAtel Corporation. (2015). IMU-FSAS product sheet. https ://novat el.com/
            Furgale, P., Rehder, J., & Siegwart, R. (2013). Unifed temporal and spatial cali-  suppo rt/suppo rt-mater ials/produ ct-sheet . Accessed 1 July 2020.
               bration for multi-sensor systems. In Proceedings of the IEEE/RSJ interna-  NovAtel Corporation. (2018a). GrafNav and GrafNet Software Version 8.70
               tional conference on intelligent robots and systems (pp. 1280–1286).  user manual. https ://novat el.com/suppo rt/suppo rt-mater ials/manua l.
            Gao, Z., Zhang, H., Ge, M., Niu, X., Shen, W., Wickert, J., et al. (2017). Tightly   Accessed 1 July 2020.
               coupled integration of multi-GNSS PPP and MEMS inertial measurement   NovAtel Corporation. (2018b). Inertial Explorer 8.70 user manual. https ://novat
               unit data. GPS Solutions, 21(2), 377–391.         el.com/suppo rt/suppo rt-mater ials/manua l. Accessed 1 July 2020.
   194   195   196   197   198   199   200   201   202   203   204