Page 77 - 《武汉大学学报(信息科学版)》2025年第10期
P. 77
2012 武 汉 大 学 学 报 (信 息 科 学 版) 2025 年 10 月
graphica Sinica, 2021, 50(12): 1751-1761. 科学版), 2015, 40(6): 800-804.
[16] LI Y, ZHANG Z T, HE X F, et al. Realistic Sto‑ LI Bin, WU Yun, LI Zhenghang. Validation of the
chastic Modeling Considering the PDOP and Its Ap‑ GNSS Advanced ARAIM Algorithm[J]. Geomatics
plication in Real-Time GNSS Point Positioning Un‑ and Information Science of Wuhan University,
der Challenging Environments[J]. Measurement, 2015, 40(6): 800-804.
2022, 197: 111342. [21] LI L, WANG H, JIA C, et al. Integrity and Conti‑
[17] BLANCH J, WALTER T, ENGE P, et al. Base‑ nuity Allocation for the RAIM with Multiple Constel‑
line Advanced RAIM User Algorithm and Possible lations[J]. GPS Solutions, 2017, 21(4): 1503-
Improvements[J]. IEEE Transactions on Aerospace 1513.
and Electronic Systems, 2015, 51(1): 713-732. [22] 牛飞, 陈金平, 高为广, 等 . 非正态分布假设下的
[18] BLANCH J, WALTER T, ENGE P, et al. Ad‑ 完好性阈值计算与分析[J]. 武汉大学学报(信息科
vanced RAIM User Algorithm Description: Integri‑ 学版), 2012, 37(12): 1429-1433.
ty Support Message Processing, Fault Detection, NIU Fei, CHEN Jinping, GAO Weiguang, et al.
Exclusion, and Protection Level Calculation[C]// Calculation and Analysis on Integrity Threshold
The 25th International Technical Meeting of The Based on Non-Gaussian Distributing[J]. Geomatics
Satellite Division of the Institute of Navigation, and Information Science of Wuhan University,
Nashville, TN, 2012. 2012, 37(12): 1429-1433.
[19] 吴云 . 最优估计与假设检验理论及其在 GNSS 中的 [23] TENG Y L, WANG J L. New Characteristics of
应用[M]. 北京: 科学出版社, 2015. Geometric Dilution of Precision (GDOP) for Multi-
WU Yun. Optimal Estimation and Hypothesis Testing GNSS Constellations[J]. Journal of Navigation,
Theory and Its Application in GNSS[M]. Beijing: 2014, 67(6): 1018-1028.
Science Press, 2015. [24] QI H T, WANG X, CUI X W, et al. ARAIM
[20] 李彬, 吴云, 李征航 . GNSS 接收机自主完备性监 Based on Fault Detector Reuse for Reducing Compu‑
测高级算法的有效性验证[J]. 武汉大学学报(信息 tational Load[J]. GPS Solutions, 2023, 27(2): 78.
(上接第 1966 页)
New York: Springer , 1992. [35] SAHINLER S, DERVIS T. Bootstrap and Jack‑
[30] POLITIS D N, ROMANO J P. The Stationary knife Resampling Algorithms for Estimation of Re‑
Bootstrap[J]. Journal of the American Statistical gression Parameters[J]. Journal of Applied Quanti‑
Association, 1994, 89(428): 1303-1313. tative Methods, 2007, 2(2): 188-199.
[31] FUERTES A M. Sieve Bootstrap t -Tests on [36] HALL P,HOROWITZ J L,JING B Y. On Blocking
Long-Run Average Parameters[J]. Computational Rules for the Bootstrap with Dependent Data[J].
Statistics & Data Analysis,2008,52(7):3354-3370. Biometrika, 1995, 82(3): 561-574.
[32] LAHIRI S N. Resampling Methods for Dependent [37] EFRON B. Nonparametric Standard Errors and
Data[M]. New York:Springer , 2003. Confidence Intervals[J]. Canadian Journal of Sta‑
[33] XU P L, LIU J N, SHI C. Total Least Squares Ad‑ tistics, 1981, 9(2): 139-158.
justment in Partial Errors-in-Variables Models: Al‑ [38] EFRON B, TIBSHIRANI R. Bootstrap Methods
gorithm and Statistical Analysis[J]. Journal of Geode‑ for Standard Errors, Confidence Intervals, and Other
sy, 2012, 86(8): 661-675. Measures of Statistical Accuracy[J]. Statistical Scien‑
[34] 王乐洋, 许光煜, 温贵森 . 一种相关观测的 Partial ce, 1986, 1(1): 54-75.
EIV 模 型 求 解 方 法[J]. 测 绘 学 报 , 2017, 46(8): [39] STINE R. An Introduction to Bootstrap Methods
978-987. [J]. Sociological Methods & Research, 1989, 18
WANG Leyang, XU Guangyu, WEN Guisen. A (2/3): 243-291.
Method for Partial EIV Model with Correlated Ob‑ [40] LÉGER C, POLITIS D N, ROMANO O P. Boot‑
servations[J]. Acta Geodaetica et Cartographica Si‑ strap Technology and Applications[J]. Technomet‑
nica, 2017, 46(8): 978-987. rics, 1992, 34(4): 378-398.

