Page 51 - 《水产学报》2025年第5期
P. 51
胡澄溪,等 水产学报, 2025, 49(5): 059104
perspectives[J]. Applied Microbiology and Biotechnology, tion of two type-1 diacylglycerol acyltransferase (DGAT1)
2012, 95(1): 1-12. genes from rice (Oryza sativa) embryo restoring the triacylgly-
[ 9 ] Wallis J G, Watts J L, Browse J. Polyunsaturated fatty acid syn- cerol accumulation in yeast[J]. Plant Molecular Biology, 2021,
thesis: what will they think of next?[J]. Trends in Biochemical 105(3): 247-262.
Sciences, 2002, 27(9): 467-473. [21] Sorger D, Daum G. Triacylglycerol biosynthesis in yeast[J].
[10] Beaudoin F, Michaelson L V, Hey S J, et al. Heterologous Applied Microbiology and Biotechnology, 2003, 61(4): 289-
reconstitution in yeast of the polyunsaturated fatty acid biosyn- 299.
thetic pathway[J]. Proceedings of the National Academy of Sci- [22] Chen C X, Sun Z, Cao H S, et al. Identification and characteriz-
ences of the United States of America, 2000, 97(12): 6421- ation of three genes encoding acyl-CoA: diacylglycerol acyl-
6426. transferase (DGAT) from the microalga Myrmecia incisa Reis-
[11] Oelkers P, Cromley D, Padamsee M, et al. The DGA1 gene igl[J]. Algal Research, 2015, 12: 280-288.
determines a second triglyceride synthetic pathway in yeast[J]. [23] Liu W, Sun Z, Chen C X, et al. Novel insights into type 2
Journal of Biological Chemistry, 2002, 277(11): 8877-8881. diacylglycerol acyltransferases in microalga Myrmecia
[12] Dahlqvist A, Ståhl U, Lenman M, et al. Phospholipid: diacyl- incisa[J]. Journal of Applied Phycology, 2021, 33(1): 25-35.
glycerol acyltransferase: an enzyme that catalyzes the acyl-CoA- [24] Bligh E G, Dyer W J. A rapid method of total lipid extraction
independent formation of triacylglycerol in yeast and plants[J]. and purification[J]. Canadian Journal of Biochemistry and
Proceedings of the National Academy of Sciences of the United Physiology, 1959, 37(8): 911-917.
States of America, 2000, 97(12): 6487-6492. [25] Dos Santos Maraschin F, Kulcheski F R, Segatto A L A, et al.
[13] Yang H Y, Bard M, Bruner D A, et al. Sterol esterification in Enzymes of glycerol-3-phosphate pathway in triacylglycerol
yeast: a two-gene process[J]. Science, 1996, 272(5266): 1353- synthesis in plants: Function, biotechnological application and
1356. evolution[J]. Progress in Lipid Research, 2019, 73: 46-64.
[14] Sandager L, Gustavsson M H, Ståhl U, et al. Storage lipid syn- [26] Sitnik S, Shtaida N, Guihéneuf F, et al. DGAT1 from the
thesis is non-essential in yeast[J]. Journal of Biological Chem- arachidonic-acid-producing microalga Lobosphaera incisa
istry, 2002, 277(8): 6478-6482. shows late gene expression under nitrogen starvation and sub-
[15] Kalscheuer R, Luftmann H, Steinbüchel A. Synthesis of novel strate promiscuity in a heterologous system[J]. Journal of
lipids in Saccharomyces cerevisiae by heterologous expression Applied Phycology, 2018, 30(5): 2773-2791.
of an unspecific bacterial acyltransferase[J]. Applied and Envir- [27] Lemmon M A. Pleckstrin homology (PH) domains and phospho-
onmental Microbiology, 2004, 70(12): 7119-7125. inositides[J]. Biochemical Society Symposia, 2007, 74: 81-93.
[16] Zhang L N, Zhang H Y, Song Y D. Identification and character- [28] Zienkiewicz K, Benning U, Siegler H, et al. The type 2 acyl-
ization of diacylglycerol acyltransferase from oleaginous fungus CoA: Diacylglycerol acyltransferase family of the oleaginous
Mucor circinelloides[J]. Journal of Agricultural and Food microalga Lobosphaera incisa[J]. BMC Plant Biology, 2018,
Chemistry, 2018, 66(3): 674-681. 18(1): 298.
[17] Khozin-Goldberg I, Cohen Z. Unraveling algal lipid metabol- [29] Nieman C. Influence of trace amounts of fatty acids on the
ism: Recent advances in gene identification[J]. Biochimie, growth of microorganisms[J]. Bacteriological Reviews, 1954,
2011, 93(1): 91-100. 18(2): 147-163.
[18] Ma X M, Wu T, Kou Y P, et al. Characterization of type I and [30] Kelsey J A, Bayles K W, Shafii B, et al. Fatty acids and
type II diacylglycerol acyltransferases from the emerging model monoacylglycerols inhibit growth of Staphylococcus aureus[J].
alga Chlorella zofingiensis reveals their functional complement- Lipids, 2006, 41(10): 951-961.
arity and engineering potential[J]. Biotechnology for Biofuels, [31] Wu J T, Chiang Y R, Huang W Y, et al. Cytotoxic effects of
2019, 12: 28. free fatty acids on phytoplankton algae and cyanobacteria[J].
[19] Liu Q, Siloto R M P, Lehner R, et al. Acyl-CoA: Diacylgly- Aquatic Toxicology, 2006, 80(4): 338-345.
cerol acyltransferase: molecular biology, biochemistry and bio- [32] Arhar S, Gogg-Fassolter G, Ogrizović M, et al. Engineering of
technology[J]. Progress in Lipid Research, 2012, 51(4): 350- Saccharomyces cerevisiae for the accumulation of high
377. amounts of triacylglycerol[J]. Microbial Cell Factories, 2021,
[20] Bhunia R K, Sinha K, Chawla K, et al. Functional characteriza- 20(1): 147.
https://www.china-fishery.cn 中国水产学会主办 sponsored by China Society of Fisheries
8