Page 102 - 《软件学报》2026年第1期
P. 102

吉品 等: 面向智能软件系统的测试用例生成方法综述                                                         99


                 [115]   Ding YR, Zou JH, Fan YX, Wang SJ, Liao QM. A digital twin-based testing and data collection system for autonomous driving in
                      extreme traffic scenarios. In: Proc. of the 6th Int’l Conf. on Video and Image Processing. Shanghai: ACM, 2023. 101–109. [doi: 10.1145/
                      3579109.3579127]
                 [116]   Song QY, Runeson P, Persson S. A scenario distribution model for effective and efficient testing of autonomous driving systems. In:
                      Proc. of the 37th IEEE/ACM Int’l Conf. on Automated Software Engineering. Rochester: ACM, 2023. 215. [doi: 10.1145/3551349.
                      3563239]
                 [117]   Zhou R, Liu YP, Zhang K, Yang O. Genetic algorithm-based challenging scenarios generation for autonomous vehicle testing. IEEE
                      Journal of Radio Frequency Identification, 2022, 6: 928–933. [doi: 10.1109/JRFID.2022.3223092]
                 [118]   Sun Y, Poskitt CM, Sun J, Chen YQ, Yang ZJ. LawBreaker: An approach for specifying traffic laws and fuzzing autonomous vehicles.
                      In: Proc. of the 37th IEEE/ACM Int’l Conf. on Automated Software Engineering. Rochester: ACM, 2023. 62. [doi: 10.1145/3551349.
                      3556897]
                 [119]   Zhang  XD,  Zhao  W,  Sun  Y,  Sun  J,  Shen  YL,  Dong  XW,  Yang  ZJ.  Testing  automated  driving  systems  by  breaking  many  laws
                      efficiently. In: Proc. of the 32nd ACM SIGSOFT Int’l Symp. on Software Testing and Analysis. Seattle: ACM, 2023. 942–953. [doi: 10.
                      1145/3597926.3598108]
                 [120]   Huai YQ, Chen YTY, Almanee S, Ngo T, Liao X, Wan ZW, Chen QA, Garcia J. Doppelgänger test generation for revealing bugs in
                      autonomous driving software. In: Proc. of the 45th IEEE/ACM Int’l Conf. on Software Engineering (ICSE). Melbourne: IEEE, 2023.
                      2591–2603. [doi: 10.1109/ICSE48619.2023.00216]
                 [121]   Zhou Y, Lin GJ, Tang Y, Yang KR, Jing W, Zhang P, Chen JB, Gong L, Liu Y. FLYOVER: A model-driven method to generate diverse
                      highway interchanges for autonomous vehicle testing. In: Proc. of the 2023 IEEE Int’l Conf. on Robotics and Automation (ICRA).
                      London: IEEE, 2023. 11389–11395. [doi: 10.1109/ICRA48891.2023.10160868]
                 [122]   Zhang XD, Cai Y. Building critical testing scenarios for autonomous driving from real accidents. In: Proc. of the 32nd ACM SIGSOFT
                      Int’l Symp. on Software Testing and Analysis. Seattle: ACM, 2023. 462–474. [doi: 10.1145/3597926.3598070]
                 [123]   Wang S, Sheng ZH, Xu JW, Chen TL, Zhu JJ, Zhang SH, Yao Y, Ma XX. ADEPT: A testing platform for simulated autonomous
                      driving. In: Proc. of the 37th IEEE/ACM Int’l Conf. on Automated Software Engineering. Rochester: ACM, 2023. 150. [doi: 10.1145/
                      3551349.3559528]
                 [124]   Tian HX, Wu GQ, Yan JR, Jiang Y, Wei J, Chen W, Li S, Ye D. Generating critical test scenarios for autonomous driving systems via
                      influential behavior patterns. In: Proc. of the 37th IEEE/ACM Int’l Conf. on Automated Software Engineering. Rochester: ACM, 2023.
                      46. [doi: 10.1145/3551349.3560430]
                 [125]   Yang  YH,  Kujanpää  K,  Babadi  IA,  Pajarinen  J,  Ilin  A.  Suicidal  pedestrian:  Generation  of  safety-critical  scenarios  for  autonomous
                      vehicles. In: Proc. of the 26th IEEE Int’l Conf. on Intelligent Transportation Systems (ITSC). Bilbao: IEEE, 2023. 1983–1988. [doi: 10.
                      1109/ITSC57777.2023.10422034]
                 [126]   Hou-Liu J, Jiang ZK, Babikian AA. Concretize: A model-driven tool for scenario-based autonomous vehicle testing. In: Proc. of the
                      27th ACM/IEEE Int’l Conf. on Model Driven Engineering Languages and Systems. Linz: ACM, 2024. 66–70. [doi: 10.1145/3652620.
                      3687793]
                 [127]   Tang SC, Zhang ZY, Zhou JX, Lei L, Zhou Y, Xue YX. LeGEND: A top-down approach to scenario generation of autonomous driving
                      systems  assisted  by  large  language  models.  In:  Proc.  of  the  39th  IEEE/ACM  Int’l  Conf.  on  Automated  Software  Engineering.
                      Sacramento: ACM, 2024. 1497–1508. [doi: 10.1145/3691620.3695520]
                 [128]   Guo A, Zhou Y, Tian HX, Fang CR, Sun YJ, Sun WS, Gao XY, Luu AT, Liu Y, Chen ZY. SoVAR: Build generalizable scenarios from
                      accident  reports  for  autonomous  driving  testing.  In:  Proc.  of  the  39th  IEEE/ACM  Int’l  Conf.  on  Automated  Software  Engineering.
                      Sacramento: ACM, 2024. 268–280. [doi: 10.1145/3691620.3695037]
                 [129]   Gao  XY,  Wang  ZJ,  Feng  Y,  Ma  L,  Chen  ZY,  Xu  BW.  MultiTest:  Physical-aware  object  insertion  for  testing  multi-sensor  fusion
                      perception systems. In: Proc. of the 46th IEEE/ACM Int’l Conf. on Software Engineering. Lisbon: ACM, 2024. 139. [doi: 10.1145/
                      3597503.3639191]
                 [130]   Pei KX, Cao YZ, Yang JF, Jana S. DeepXplore: Automated whitebox testing of deep learning systems. In: Proc. of the 26th Symp. on
                      Operating Systems Principles. Shanghai: ACM, 2017. 1–18. [doi: 10.1145/3132747.3132785]
                 [131]   Ma L, Juefei-Xu F, Zhang FY, Sun JY, Xue MH, Li B, Chen CY, Su T, Li L, Liu Y, Zhao JJ, Wang YD. DeepGauge: Multi-granularity
                      testing criteria for deep learning systems. In: Proc. of the 33rd ACM/IEEE Int’l Conf. on Automated Software Engineering. Montpellier:
                      ACM, 2018. 120–131. [doi: 10.1145/3238147.3238202]
                 [132]   Du  XN,  Xie  XF,  Li  Y,  Ma  L,  Zhao  JJ,  Liu  Y.  DeepCruiser:  Automated  guided  testing  for  stateful  deep  learning  systems.
                      arXiv:1812.05339, 2018.
   97   98   99   100   101   102   103   104   105   106   107