Page 102 - 《软件学报》2026年第1期
P. 102
吉品 等: 面向智能软件系统的测试用例生成方法综述 99
[115] Ding YR, Zou JH, Fan YX, Wang SJ, Liao QM. A digital twin-based testing and data collection system for autonomous driving in
extreme traffic scenarios. In: Proc. of the 6th Int’l Conf. on Video and Image Processing. Shanghai: ACM, 2023. 101–109. [doi: 10.1145/
3579109.3579127]
[116] Song QY, Runeson P, Persson S. A scenario distribution model for effective and efficient testing of autonomous driving systems. In:
Proc. of the 37th IEEE/ACM Int’l Conf. on Automated Software Engineering. Rochester: ACM, 2023. 215. [doi: 10.1145/3551349.
3563239]
[117] Zhou R, Liu YP, Zhang K, Yang O. Genetic algorithm-based challenging scenarios generation for autonomous vehicle testing. IEEE
Journal of Radio Frequency Identification, 2022, 6: 928–933. [doi: 10.1109/JRFID.2022.3223092]
[118] Sun Y, Poskitt CM, Sun J, Chen YQ, Yang ZJ. LawBreaker: An approach for specifying traffic laws and fuzzing autonomous vehicles.
In: Proc. of the 37th IEEE/ACM Int’l Conf. on Automated Software Engineering. Rochester: ACM, 2023. 62. [doi: 10.1145/3551349.
3556897]
[119] Zhang XD, Zhao W, Sun Y, Sun J, Shen YL, Dong XW, Yang ZJ. Testing automated driving systems by breaking many laws
efficiently. In: Proc. of the 32nd ACM SIGSOFT Int’l Symp. on Software Testing and Analysis. Seattle: ACM, 2023. 942–953. [doi: 10.
1145/3597926.3598108]
[120] Huai YQ, Chen YTY, Almanee S, Ngo T, Liao X, Wan ZW, Chen QA, Garcia J. Doppelgänger test generation for revealing bugs in
autonomous driving software. In: Proc. of the 45th IEEE/ACM Int’l Conf. on Software Engineering (ICSE). Melbourne: IEEE, 2023.
2591–2603. [doi: 10.1109/ICSE48619.2023.00216]
[121] Zhou Y, Lin GJ, Tang Y, Yang KR, Jing W, Zhang P, Chen JB, Gong L, Liu Y. FLYOVER: A model-driven method to generate diverse
highway interchanges for autonomous vehicle testing. In: Proc. of the 2023 IEEE Int’l Conf. on Robotics and Automation (ICRA).
London: IEEE, 2023. 11389–11395. [doi: 10.1109/ICRA48891.2023.10160868]
[122] Zhang XD, Cai Y. Building critical testing scenarios for autonomous driving from real accidents. In: Proc. of the 32nd ACM SIGSOFT
Int’l Symp. on Software Testing and Analysis. Seattle: ACM, 2023. 462–474. [doi: 10.1145/3597926.3598070]
[123] Wang S, Sheng ZH, Xu JW, Chen TL, Zhu JJ, Zhang SH, Yao Y, Ma XX. ADEPT: A testing platform for simulated autonomous
driving. In: Proc. of the 37th IEEE/ACM Int’l Conf. on Automated Software Engineering. Rochester: ACM, 2023. 150. [doi: 10.1145/
3551349.3559528]
[124] Tian HX, Wu GQ, Yan JR, Jiang Y, Wei J, Chen W, Li S, Ye D. Generating critical test scenarios for autonomous driving systems via
influential behavior patterns. In: Proc. of the 37th IEEE/ACM Int’l Conf. on Automated Software Engineering. Rochester: ACM, 2023.
46. [doi: 10.1145/3551349.3560430]
[125] Yang YH, Kujanpää K, Babadi IA, Pajarinen J, Ilin A. Suicidal pedestrian: Generation of safety-critical scenarios for autonomous
vehicles. In: Proc. of the 26th IEEE Int’l Conf. on Intelligent Transportation Systems (ITSC). Bilbao: IEEE, 2023. 1983–1988. [doi: 10.
1109/ITSC57777.2023.10422034]
[126] Hou-Liu J, Jiang ZK, Babikian AA. Concretize: A model-driven tool for scenario-based autonomous vehicle testing. In: Proc. of the
27th ACM/IEEE Int’l Conf. on Model Driven Engineering Languages and Systems. Linz: ACM, 2024. 66–70. [doi: 10.1145/3652620.
3687793]
[127] Tang SC, Zhang ZY, Zhou JX, Lei L, Zhou Y, Xue YX. LeGEND: A top-down approach to scenario generation of autonomous driving
systems assisted by large language models. In: Proc. of the 39th IEEE/ACM Int’l Conf. on Automated Software Engineering.
Sacramento: ACM, 2024. 1497–1508. [doi: 10.1145/3691620.3695520]
[128] Guo A, Zhou Y, Tian HX, Fang CR, Sun YJ, Sun WS, Gao XY, Luu AT, Liu Y, Chen ZY. SoVAR: Build generalizable scenarios from
accident reports for autonomous driving testing. In: Proc. of the 39th IEEE/ACM Int’l Conf. on Automated Software Engineering.
Sacramento: ACM, 2024. 268–280. [doi: 10.1145/3691620.3695037]
[129] Gao XY, Wang ZJ, Feng Y, Ma L, Chen ZY, Xu BW. MultiTest: Physical-aware object insertion for testing multi-sensor fusion
perception systems. In: Proc. of the 46th IEEE/ACM Int’l Conf. on Software Engineering. Lisbon: ACM, 2024. 139. [doi: 10.1145/
3597503.3639191]
[130] Pei KX, Cao YZ, Yang JF, Jana S. DeepXplore: Automated whitebox testing of deep learning systems. In: Proc. of the 26th Symp. on
Operating Systems Principles. Shanghai: ACM, 2017. 1–18. [doi: 10.1145/3132747.3132785]
[131] Ma L, Juefei-Xu F, Zhang FY, Sun JY, Xue MH, Li B, Chen CY, Su T, Li L, Liu Y, Zhao JJ, Wang YD. DeepGauge: Multi-granularity
testing criteria for deep learning systems. In: Proc. of the 33rd ACM/IEEE Int’l Conf. on Automated Software Engineering. Montpellier:
ACM, 2018. 120–131. [doi: 10.1145/3238147.3238202]
[132] Du XN, Xie XF, Li Y, Ma L, Zhao JJ, Liu Y. DeepCruiser: Automated guided testing for stateful deep learning systems.
arXiv:1812.05339, 2018.

