Page 98 - 《软件学报》2026年第1期
P. 98

吉品 等: 面向智能软件系统的测试用例生成方法综述                                                         95


                      Intelligence Applications and Innovations. Neos Marmaras: Springer, 2020. 373–383. [doi: 10.1007/978-3-030-49186-4_31]
                 [26]   Yurtsever E, Lambert J, Carballo A, Takeda K. A survey of autonomous driving: Common practices and emerging technologies. IEEE
                      Access, 2020, 8: 58443–58469. [doi: 10.1109/ACCESS.2020.2983149]
                 [27]   Peters BS, Armijo PR, Krause C, Choudhury SA, Oleynikov D. Review of emerging surgical robotic technology. Surgical Endoscopy,
                      2018, 32(4): 1636–1655. [doi: 10.1007/s00464-018-6079-2]
                 [28]   Ye SJ, Zhang PC, Ji SH, Dai QY, Yuan TH, Ren B. Survey on non-functional attributes for AI-enabled software systems and quality
                      assurance methods. Ruan Jian Xue Bao/Journal of Software, 2023, 34(1): 103–129 (in Chinese with English abstract). http://www.jos.
                      org.cn/1000-9825/6409.htm [doi: 10.13328/j.cnki.jos.006409]
                 [29]   Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504–507. [doi: 10.
                      1126/science.1127647]
                 [30]   LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436–444. [doi: 10.1038/nature14539]
                 [31]   Li ZW, Liu F, Yang WJ, Peng SH, Zhou J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE
                      Trans. on Neural Networks and Learning Systems, 2022, 33(12): 6999–7019. [doi: 10.1109/TNNLS.2021.3084827]
                 [32]   Salehinejad H, Sankar S, Barfett J, Colak E, Valaee S. Recent advances in recurrent neural networks. arXiv:1801.01078, 2018.
                 [33]   van Houdt G, Mosquera C, Nápoles G. A review on the long short-term memory model. Artificial Intelligence Review, 2020, 53(8):
                      5929–5955. [doi: 10.1007/s10462-020-09838-1]
                 [34]   Larochelle  H,  Bengio  Y,  Louradour  J,  Lamblin  P.  Exploring  strategies  for  training  deep  neural  networks.  The  Journal  of  Machine
                      Learning Research, 2009, 10: 1–40.
                 [35]   Liu B, Wei Y, Zhang Y, Yang Q. Deep neural networks for high dimension, low sample size data. In: Proc. of the 26th Int’l Joint Conf.
                      on Artificial Intelligence. Melbourne: AAAI Press, 2017. 2287–2293.
                 [36]   Wenzel J, Matter H, Schmidt F. Predictive multitask deep neural network models for ADME-Tox properties: Learning from large data
                      sets. Journal of Chemical Information and Modeling, 2019, 59(3): 1253–1268. [doi: 10.1021/acs.jcim.8b00785]
                 [37]   Tesla autopilot crashes again: Does not slow down directly into the white van. 2020 (in Chinese). https://nev.ofweek.com/2020-06/ART-
                      71005-8440-30442524.html
                 [38]   Takanen A, Demott JD, Miller C. Fuzzing for Software Security Testing and Quality Assurance. Norwood: Artech House, 2018.
                 [39]   Chen TY, Cheung SC, Yiu SM. Metamorphic testing: A new approach for generating next test cases. arXiv:2002.12543, 2020.
                 [40]   McKeeman WM. Differential testing for software. Digital Technical Journal, 1998, 10(1): 100–107.
                 [41]   Feng D, Haase-Schütz C, Rosenbaum L, Hertlein H, Gläser C, Timm F, Wiesbeck W, Dietmayer K. Deep multi-modal object detection
                      and  semantic  segmentation  for  autonomous  driving:  Datasets,  methods,  and  challenges.  IEEE  Trans.  on  Intelligent  Transportation
                      Systems, 2021, 22(3): 1341–1360. [doi: 10.1109/TITS.2020.2972974]
                 [42]   Yuan XY, He P, Zhu QL, Li XL. Adversarial examples: Attacks and defenses for deep learning. IEEE Trans. on Neural Networks and
                      Learning Systems, 2019, 30(9): 2805–2824. [doi: 10.1109/TNNLS.2018.2886017]
                 [43]   Ilyas A, Santurkar S, Tsipras D, Engstrom L, Tran B, Madry A. Adversarial examples are not bugs, they are features. In: Proc. of the
                      33rd Int’l Conf. on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2019. 125–136.
                 [44]   Hagler DJ Jr, Hatton S, Cornejo MD, et al. Image processing and analysis methods for the adolescent brain cognitive development
                      study. NeuroImage, 2019, 202: 116091. [doi: 10.1016/j.neuroimage.2019.116091]
                 [45]   Ren XL, Li XY, Ren KJ, Song JQ, Xu ZC, Deng KF, Wang X. Deep learning-based weather prediction: A survey. Big Data Research,
                      2021, 23: 100178. [doi: 10.1016/j.bdr.2020.100178]
                 [46]   Maier A, Syben C, Lasser T, Riess C. A gentle introduction to deep learning in medical image processing. Zeitschrift für Medizinische
                      Physik, 2019, 29(2): 86–101. [doi: 10.1016/j.zemedi.2018.12.003]
                 [47]   Czimmermann T, Ciuti G, Milazzo M, Chiurazzi M, Roccella S, Oddo CM, Dario P. Visual-based defect detection and classification
                      approaches for industrial applications—A survey. Sensors, 2020, 20(5): 1459. [doi: 10.3390/s20051459]
                 [48]   Jalled F, Voronkov I. Object detection using image processing. arXiv:1611.07791, 2016.
                 [49]   Wang P, Zhang ZY, Zhou YQ, Huang ZQ. Test data augmentation for image recognition software. In: Proc. of the 20th IEEE Int’l Conf.
                      on Software Quality, Reliability and Security Companion (QRS-C). Macao: IEEE, 2020. 280–284. [doi: 10.1109/QRS-C51114.2020.
                      00054]
                 [50]   Tian YC, Zhong ZY, Ordonez V, Kaiser G, Ray B. Testing DNN image classifiers for confusion & bias errors. In: Proc. of the 42nd
                      ACM/IEEE Int’l Conf. on Software Engineering. Seoul: ACM, 2020. 1122–1134. [doi: 10.1145/3377811.3380400]
                 [51]   Dreossi  T,  Ghosh  S,  Sangiovanni-Vincentelli  A,  Seshia  SA.  Systematic  testing  of  convolutional  neural  networks  for  autonomous
                      driving. arXiv:1708.03309, 2017.
   93   94   95   96   97   98   99   100   101   102   103