Page 98 - 《软件学报》2026年第1期
P. 98
吉品 等: 面向智能软件系统的测试用例生成方法综述 95
Intelligence Applications and Innovations. Neos Marmaras: Springer, 2020. 373–383. [doi: 10.1007/978-3-030-49186-4_31]
[26] Yurtsever E, Lambert J, Carballo A, Takeda K. A survey of autonomous driving: Common practices and emerging technologies. IEEE
Access, 2020, 8: 58443–58469. [doi: 10.1109/ACCESS.2020.2983149]
[27] Peters BS, Armijo PR, Krause C, Choudhury SA, Oleynikov D. Review of emerging surgical robotic technology. Surgical Endoscopy,
2018, 32(4): 1636–1655. [doi: 10.1007/s00464-018-6079-2]
[28] Ye SJ, Zhang PC, Ji SH, Dai QY, Yuan TH, Ren B. Survey on non-functional attributes for AI-enabled software systems and quality
assurance methods. Ruan Jian Xue Bao/Journal of Software, 2023, 34(1): 103–129 (in Chinese with English abstract). http://www.jos.
org.cn/1000-9825/6409.htm [doi: 10.13328/j.cnki.jos.006409]
[29] Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504–507. [doi: 10.
1126/science.1127647]
[30] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436–444. [doi: 10.1038/nature14539]
[31] Li ZW, Liu F, Yang WJ, Peng SH, Zhou J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE
Trans. on Neural Networks and Learning Systems, 2022, 33(12): 6999–7019. [doi: 10.1109/TNNLS.2021.3084827]
[32] Salehinejad H, Sankar S, Barfett J, Colak E, Valaee S. Recent advances in recurrent neural networks. arXiv:1801.01078, 2018.
[33] van Houdt G, Mosquera C, Nápoles G. A review on the long short-term memory model. Artificial Intelligence Review, 2020, 53(8):
5929–5955. [doi: 10.1007/s10462-020-09838-1]
[34] Larochelle H, Bengio Y, Louradour J, Lamblin P. Exploring strategies for training deep neural networks. The Journal of Machine
Learning Research, 2009, 10: 1–40.
[35] Liu B, Wei Y, Zhang Y, Yang Q. Deep neural networks for high dimension, low sample size data. In: Proc. of the 26th Int’l Joint Conf.
on Artificial Intelligence. Melbourne: AAAI Press, 2017. 2287–2293.
[36] Wenzel J, Matter H, Schmidt F. Predictive multitask deep neural network models for ADME-Tox properties: Learning from large data
sets. Journal of Chemical Information and Modeling, 2019, 59(3): 1253–1268. [doi: 10.1021/acs.jcim.8b00785]
[37] Tesla autopilot crashes again: Does not slow down directly into the white van. 2020 (in Chinese). https://nev.ofweek.com/2020-06/ART-
71005-8440-30442524.html
[38] Takanen A, Demott JD, Miller C. Fuzzing for Software Security Testing and Quality Assurance. Norwood: Artech House, 2018.
[39] Chen TY, Cheung SC, Yiu SM. Metamorphic testing: A new approach for generating next test cases. arXiv:2002.12543, 2020.
[40] McKeeman WM. Differential testing for software. Digital Technical Journal, 1998, 10(1): 100–107.
[41] Feng D, Haase-Schütz C, Rosenbaum L, Hertlein H, Gläser C, Timm F, Wiesbeck W, Dietmayer K. Deep multi-modal object detection
and semantic segmentation for autonomous driving: Datasets, methods, and challenges. IEEE Trans. on Intelligent Transportation
Systems, 2021, 22(3): 1341–1360. [doi: 10.1109/TITS.2020.2972974]
[42] Yuan XY, He P, Zhu QL, Li XL. Adversarial examples: Attacks and defenses for deep learning. IEEE Trans. on Neural Networks and
Learning Systems, 2019, 30(9): 2805–2824. [doi: 10.1109/TNNLS.2018.2886017]
[43] Ilyas A, Santurkar S, Tsipras D, Engstrom L, Tran B, Madry A. Adversarial examples are not bugs, they are features. In: Proc. of the
33rd Int’l Conf. on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2019. 125–136.
[44] Hagler DJ Jr, Hatton S, Cornejo MD, et al. Image processing and analysis methods for the adolescent brain cognitive development
study. NeuroImage, 2019, 202: 116091. [doi: 10.1016/j.neuroimage.2019.116091]
[45] Ren XL, Li XY, Ren KJ, Song JQ, Xu ZC, Deng KF, Wang X. Deep learning-based weather prediction: A survey. Big Data Research,
2021, 23: 100178. [doi: 10.1016/j.bdr.2020.100178]
[46] Maier A, Syben C, Lasser T, Riess C. A gentle introduction to deep learning in medical image processing. Zeitschrift für Medizinische
Physik, 2019, 29(2): 86–101. [doi: 10.1016/j.zemedi.2018.12.003]
[47] Czimmermann T, Ciuti G, Milazzo M, Chiurazzi M, Roccella S, Oddo CM, Dario P. Visual-based defect detection and classification
approaches for industrial applications—A survey. Sensors, 2020, 20(5): 1459. [doi: 10.3390/s20051459]
[48] Jalled F, Voronkov I. Object detection using image processing. arXiv:1611.07791, 2016.
[49] Wang P, Zhang ZY, Zhou YQ, Huang ZQ. Test data augmentation for image recognition software. In: Proc. of the 20th IEEE Int’l Conf.
on Software Quality, Reliability and Security Companion (QRS-C). Macao: IEEE, 2020. 280–284. [doi: 10.1109/QRS-C51114.2020.
00054]
[50] Tian YC, Zhong ZY, Ordonez V, Kaiser G, Ray B. Testing DNN image classifiers for confusion & bias errors. In: Proc. of the 42nd
ACM/IEEE Int’l Conf. on Software Engineering. Seoul: ACM, 2020. 1122–1134. [doi: 10.1145/3377811.3380400]
[51] Dreossi T, Ghosh S, Sangiovanni-Vincentelli A, Seshia SA. Systematic testing of convolutional neural networks for autonomous
driving. arXiv:1708.03309, 2017.

