Page 103 - 《软件学报》2026年第1期
P. 103

100                                                        软件学报  2026  年第  37  卷第  1  期


                 [133]   Ma L, Juefei-Xu F, Xue MH, Li B, Li L, Liu Y, Zhao JJ. DeepCT: Tomographic combinatorial testing for deep learning systems. In:
                      Proc. of the 26th IEEE Int’l Conf. on Software Analysis, Evolution and Reengineering (SANER). Hangzhou: IEEE, 2019. 614–618.
                      [doi: 10.1109/SANER.2019.8668044]
                 [134]   Sun YC, Huang XW, Kroening D, Sharp J, Hill M, Ashmore R. Structural test coverage criteria for deep neural networks. ACM Trans.
                      on Embedded Computing Systems, 2019, 18(5s): 94. [doi: 10.1145/3358233]
                 [135]   Kim J, Feldt R, Yoo S. Guiding deep learning system testing using surprise adequacy. In: Proc. of the 41st IEEE/ACM Int’l Conf. on
                      Software Engineering. Montreal: IEEE, 2019. 1039–1049. [doi: 10.1109/ICSE.2019.00108]
                 [136]   Kim  J,  Feldt  R,  Yoo  S.  Evaluating  surprise  adequacy  for  deep  learning  system  testing.  ACM  Trans.  on  Software  Engineering  and
                      Methodology, 2023, 32(2): 42. [doi: 10.1145/3546947]
                 [137]   Gerasimou S, Eniser HF, Sen A, Cakan A. Importance-driven deep learning system testing. In: Proc. of the 42nd ACM/IEEE Int’l Conf.
                      on Software Engineering. Seoul: ACM, 2020. 702–713. [doi: 10.1145/3377811.3380391]
                 [138]   Ma  W,  Papadakis  M,  Tsakmalis  A,  Cordy  M,  Le  Traon  Y.  Test  selection  for  deep  learning  systems.  ACM  Trans.  on  Software
                      Engineering and Methodology, 2021, 30(2): 13. [doi: 10.1145/3417330]
                 [139]   Xie XY, Yin PB, Chen SQ. Boosting the revealing of detected violations in deep learning testing: A diversity-guided method. In: Proc.
                      of the 37th IEEE/ACM Int’l Conf. on Automated Software Engineering. Rochester: ACM, 2023. 17. [doi: 10.1145/3551349.3556919]
                 [140]   Sun YC, Huang XW, Kroening D, Sharp J, Hill M, Ashmore R. Testing deep neural networks. arXiv:1803.04792, 2019.
                 [141]   Yoo  S,  Harman  M.  Regression  testing  minimization,  selection  and  prioritization:  A  survey.  Software  Testing,  Verification  and
                      Reliability, 2012, 22(2): 67–120. [doi: 10.1002/stv.430]
                 [142]   Arrieta  A.  Multi-objective  metamorphic  follow-up  test  case  selection  for  deep  learning  systems.  In:  Proc.  of  the  2022  Genetic  and
                      Evolutionary Computation Conf. Boston: ACM, 2022. 1327–1335. [doi: 10.1145/3512290.3528697]
                 [143]   The MNIST dataset. 2023. https://www.tensorflow.org/datasets/catalog/mnist
                 [144]   The CIFAR-10 dataset. 2023. https://www.cs.toronto.edu/~kriz/cifar.html
                 [145]   The ImageNet dataset. 2023. https://www.image-net.org/update-mar-11-2021.php
                 [146]   Xie XF, Ma L, Juefei-Xu F, Xue MH, Chen HX, Liu Y, Zhao JJ, Li B, Yin JX, See S. DeepHunter: A coverage-guided fuzz testing
                      framework for deep neural networks. In: Proc. of the 28th ACM SIGSOFT Int’l Symp. on Software Testing and Analysis. Beijing:
                      ACM, 2019. 146–157. [doi: 10.1145/3293882.3330579]
                 [147]   Sun YC, Wu M, Ruan WJ, Huang XW, Kwiatkowska M, Kroening D. Concolic testing for deep neural networks. In: Proc. of the 33rd
                      ACM/IEEE Int’l Conf. on Automated Software Engineering. Montpellier: ACM, 2018. 109–119. [doi: 10.1145/3238147.3238172]
                 [148]   Riccio V, Tonella P. Model-based exploration of the frontier of behaviours for deep learning system testing. In: Proc. of the 28th ACM
                      Joint Meeting European Software Engineering Conf. and Symp. on the Foundations of Software Engineering. ACM, 2020. 876–888.
                      [doi: 10.1145/3368089.3409730]
                 [149]   Zohdinasab  T,  Riccio  V,  Tonella  P.  DeepAtash:  Focused  test  generation  for  deep  learning  systems.  In:  Proc.  of  the  32nd  ACM
                      SIGSOFT Int’l Symp. on Software Testing and Analysis. Seattle: ACM, 2023. 954–966. [doi: 10.1145/3597926.3598109]
                 [150]   Hu Q, Guo YJ, Xie XF, Cordy M, Papadakis M, Ma L, Le Traon Y. Aries: Efficient testing of deep neural networks via labeling-free
                      accuracy estimation. In: Proc. of the 45th IEEE/ACM Int’l Conf. on Software Engineering (ICSE). Melbourne: IEEE, 2023. 1776–1787.
                      [doi: 10.1109/ICSE48619.2023.00152]
                 [151]   Chen JJ, Wu Z, Wang Z, You HM, Zhang LM, Yan M. Practical accuracy estimation for efficient deep neural network testing. ACM
                      Trans. on Software Engineering and Methodology, 2020, 29(4): 30. [doi: 10.1145/3394112]
                 [152]   Li Z, Ma XX, Xu C, Cao C, Xu JW, Lü J. Boosting operational DNN testing efficiency through conditioning. In: Proc. of the 27th ACM
                      Joint Meeting on European Software Engineering Conf. and Symp. on the Foundations of Software Engineering. Tallinn: ACM, 2019.
                      499–509. [doi: 10.1145/3338906.3338930]


                 附中文参考文献
                 [10]   泰国威胁将对  Facebook  采取法律行动 因自动翻译对国王大不敬? 2020. https://k.sina.cn/article_1949671172_74359f0400100rsmq.
                     html
                 [20]   王赞, 闫明, 刘爽, 陈俊洁, 张栋迪, 吴卓, 陈翔. 深度神经网络测试研究综述. 软件学报, 2020, 31(5): 1255–1275. http://www.jos.org.
                     cn/1000-9825/5951.htm [doi: 10.13328/j.cnki.jos.005951]
                 [28]   叶仕俊, 张鹏程, 吉顺慧, 戴启印, 袁天昊, 任彬. 人工智能软件系统的非功能属性及其质量保障方法综述. 软件学报, 2023, 34(1):
                     103–129. http://www.jos.org.cn/1000-9825/6409.htm [doi: 10.13328/j.cnki.jos.006409]
   98   99   100   101   102   103   104   105   106   107   108