Page 103 - 《软件学报》2026年第1期
P. 103
100 软件学报 2026 年第 37 卷第 1 期
[133] Ma L, Juefei-Xu F, Xue MH, Li B, Li L, Liu Y, Zhao JJ. DeepCT: Tomographic combinatorial testing for deep learning systems. In:
Proc. of the 26th IEEE Int’l Conf. on Software Analysis, Evolution and Reengineering (SANER). Hangzhou: IEEE, 2019. 614–618.
[doi: 10.1109/SANER.2019.8668044]
[134] Sun YC, Huang XW, Kroening D, Sharp J, Hill M, Ashmore R. Structural test coverage criteria for deep neural networks. ACM Trans.
on Embedded Computing Systems, 2019, 18(5s): 94. [doi: 10.1145/3358233]
[135] Kim J, Feldt R, Yoo S. Guiding deep learning system testing using surprise adequacy. In: Proc. of the 41st IEEE/ACM Int’l Conf. on
Software Engineering. Montreal: IEEE, 2019. 1039–1049. [doi: 10.1109/ICSE.2019.00108]
[136] Kim J, Feldt R, Yoo S. Evaluating surprise adequacy for deep learning system testing. ACM Trans. on Software Engineering and
Methodology, 2023, 32(2): 42. [doi: 10.1145/3546947]
[137] Gerasimou S, Eniser HF, Sen A, Cakan A. Importance-driven deep learning system testing. In: Proc. of the 42nd ACM/IEEE Int’l Conf.
on Software Engineering. Seoul: ACM, 2020. 702–713. [doi: 10.1145/3377811.3380391]
[138] Ma W, Papadakis M, Tsakmalis A, Cordy M, Le Traon Y. Test selection for deep learning systems. ACM Trans. on Software
Engineering and Methodology, 2021, 30(2): 13. [doi: 10.1145/3417330]
[139] Xie XY, Yin PB, Chen SQ. Boosting the revealing of detected violations in deep learning testing: A diversity-guided method. In: Proc.
of the 37th IEEE/ACM Int’l Conf. on Automated Software Engineering. Rochester: ACM, 2023. 17. [doi: 10.1145/3551349.3556919]
[140] Sun YC, Huang XW, Kroening D, Sharp J, Hill M, Ashmore R. Testing deep neural networks. arXiv:1803.04792, 2019.
[141] Yoo S, Harman M. Regression testing minimization, selection and prioritization: A survey. Software Testing, Verification and
Reliability, 2012, 22(2): 67–120. [doi: 10.1002/stv.430]
[142] Arrieta A. Multi-objective metamorphic follow-up test case selection for deep learning systems. In: Proc. of the 2022 Genetic and
Evolutionary Computation Conf. Boston: ACM, 2022. 1327–1335. [doi: 10.1145/3512290.3528697]
[143] The MNIST dataset. 2023. https://www.tensorflow.org/datasets/catalog/mnist
[144] The CIFAR-10 dataset. 2023. https://www.cs.toronto.edu/~kriz/cifar.html
[145] The ImageNet dataset. 2023. https://www.image-net.org/update-mar-11-2021.php
[146] Xie XF, Ma L, Juefei-Xu F, Xue MH, Chen HX, Liu Y, Zhao JJ, Li B, Yin JX, See S. DeepHunter: A coverage-guided fuzz testing
framework for deep neural networks. In: Proc. of the 28th ACM SIGSOFT Int’l Symp. on Software Testing and Analysis. Beijing:
ACM, 2019. 146–157. [doi: 10.1145/3293882.3330579]
[147] Sun YC, Wu M, Ruan WJ, Huang XW, Kwiatkowska M, Kroening D. Concolic testing for deep neural networks. In: Proc. of the 33rd
ACM/IEEE Int’l Conf. on Automated Software Engineering. Montpellier: ACM, 2018. 109–119. [doi: 10.1145/3238147.3238172]
[148] Riccio V, Tonella P. Model-based exploration of the frontier of behaviours for deep learning system testing. In: Proc. of the 28th ACM
Joint Meeting European Software Engineering Conf. and Symp. on the Foundations of Software Engineering. ACM, 2020. 876–888.
[doi: 10.1145/3368089.3409730]
[149] Zohdinasab T, Riccio V, Tonella P. DeepAtash: Focused test generation for deep learning systems. In: Proc. of the 32nd ACM
SIGSOFT Int’l Symp. on Software Testing and Analysis. Seattle: ACM, 2023. 954–966. [doi: 10.1145/3597926.3598109]
[150] Hu Q, Guo YJ, Xie XF, Cordy M, Papadakis M, Ma L, Le Traon Y. Aries: Efficient testing of deep neural networks via labeling-free
accuracy estimation. In: Proc. of the 45th IEEE/ACM Int’l Conf. on Software Engineering (ICSE). Melbourne: IEEE, 2023. 1776–1787.
[doi: 10.1109/ICSE48619.2023.00152]
[151] Chen JJ, Wu Z, Wang Z, You HM, Zhang LM, Yan M. Practical accuracy estimation for efficient deep neural network testing. ACM
Trans. on Software Engineering and Methodology, 2020, 29(4): 30. [doi: 10.1145/3394112]
[152] Li Z, Ma XX, Xu C, Cao C, Xu JW, Lü J. Boosting operational DNN testing efficiency through conditioning. In: Proc. of the 27th ACM
Joint Meeting on European Software Engineering Conf. and Symp. on the Foundations of Software Engineering. Tallinn: ACM, 2019.
499–509. [doi: 10.1145/3338906.3338930]
附中文参考文献
[10] 泰国威胁将对 Facebook 采取法律行动 因自动翻译对国王大不敬? 2020. https://k.sina.cn/article_1949671172_74359f0400100rsmq.
html
[20] 王赞, 闫明, 刘爽, 陈俊洁, 张栋迪, 吴卓, 陈翔. 深度神经网络测试研究综述. 软件学报, 2020, 31(5): 1255–1275. http://www.jos.org.
cn/1000-9825/5951.htm [doi: 10.13328/j.cnki.jos.005951]
[28] 叶仕俊, 张鹏程, 吉顺慧, 戴启印, 袁天昊, 任彬. 人工智能软件系统的非功能属性及其质量保障方法综述. 软件学报, 2023, 34(1):
103–129. http://www.jos.org.cn/1000-9825/6409.htm [doi: 10.13328/j.cnki.jos.006409]

