Page 99 - 《软件学报》2026年第1期
P. 99

96                                                         软件学报  2026  年第  37  卷第  1  期


                 [52]   Tian YC, Pei KX, Jana S, Ray B. DeepTest: Automated testing of deep-neural-network-driven autonomous cars. In: Proc. of the 40th Int’l
                      Conf. on Software Engineering. Gothenburg: ACM, 2018. 303–314. [doi: 10.1145/3180155.3180220]
                 [53]   Wang S, Su ZD. Metamorphic object insertion for testing object detection systems. In: Proc. of the 35th IEEE/ACM Int’l Conf. on
                      Automated Software Engineering. ACM, 2021. 1053–1065. [doi: 10.1145/3324884.3416584]
                 [54]   Shao JY. Testing object detection for autonomous driving systems via 3D reconstruction. In: Proc. of the 43rd IEEE/ACM Int’l Conf. on
                      Software  Engineering:  Companion  Proc.  (ICSE-Companion).  Madrid:  IEEE,  2021.  117–119.  [doi:  10.1109/ICSE-Companion52605.
                      2021.00052]
                 [55]   Wang XL, Yang SQ, Shao JY, Chang J, Gao G, Li M, Xuan JF. Object removal for testing object detection in autonomous vehicle
                      systems. In: Proc. of the 21st IEEE Int’l Conf. on Software Quality, Reliability and Security Companion (QRS-C). Haikou: IEEE, 2021.
                      543–549. [doi: 10.1109/qrs-c55045.2021.00083]
                 [56]   Shorten C, Khoshgoftaar TM. A survey on image data augmentation for deep learning. Journal of Big Data, 2019, 6(1): 60. [doi: 10.
                      1186/s40537-019-0197-0]
                 [57]   Dasiopoulou S, Mezaris V, Kompatsiaris I, Papastathis VK, Strintzis MG. Knowledge-assisted semantic video object detection. IEEE
                      Trans.  on  Circuits  and  Systems  for  Video  Technology,  2005,  15(10):  1210–1224  (in  Chinese  with  English  abstract).  [doi:  10.1109/
                      TCSVT.2005.854238]
                 [58]   Yuan L, Li XM, Pan ZX, Sun JM, Xiao L. Review of adversarial examples for object detection. Journal of Image and Graphics, 27(10):
                      2873–2896. [doi: 10.11834/jig.210209]
                 [59]   Liu L, Ouyang WL, Wang XG, Fieguth P, Chen J, Liu XW, Pietikäinen M. Deep learning for generic object detection: A survey. Int’l
                      Journal of Computer Vision, 2020, 128(2): 261–318. [doi: 10.1007/s11263-019-01247-4]
                 [60]   Xie C, Wang JY, Zhang ZS, Zhou YY, Xie LX, Yuille A. Adversarial examples for semantic segmentation and object detection. In:
                      Proc. of the 2017 IEEE Int’l Conf. on Computer Vision (ICCV). Venice: IEEE, 2017. 1378–1387. [doi: 10.1109/ICCV.2017.153]
                 [61]   Otter DW, Medina JR, Kalita JK. A survey of the usages of deep learning for natural language processing. IEEE Trans. on Neural
                      Networks and Learning Systems, 2021, 32(2): 604–624. [doi: 10.1109/TNNLS.2020.2979670]
                 [62]   Liu ZX, Feng Y, Chen ZY. DialTest: Automated testing for recurrent-neural-network-driven dialogue systems. In: Proc. of the 30th
                      ACM SIGSOFT Int’l Symp. on Software Testing and Analysis. ACM, 2021. 115–126. [doi: 10.1145/3460319.3464829]
                 [63]   Shen XC, Chen HB, Chen JF, Zhang JW, Wang SH. EcoDialTest: Adaptive mutation schedule for automated dialogue systems testing.
                      In: Proc. of the 2023 IEEE Int’l Conf. on Software Analysis, Evolution and Reengineering (SANER). Taipa: IEEE, 2023. 933–939.
                      [doi: 10.1109/SANER56733.2023.00113]
                 [64]   Chen HB, Chen JF, Wu YC, Cai SH, Ahmad B, Huang RB, Wang SR, Zhang C. DialTest-EA: An enhanced fuzzing approach with
                      energy adjustment for dialogue systems via metamorphic testing. Software Testing, Verification and Reliability, 2025, 35(1): e1897.
                      [doi: 10.1002/stvr.1897]
                 [65]   Guo  GX,  Aleti  A,  Neelofar  N,  Tantithamthavorn  C.  MORTAR:  Metamorphic  multi-turn  testing  for  LLM-based  dialogue  systems.
                      arXiv:2412.15557, 2024.
                 [66]   He PJ, Meister C, Su ZD. Structure-invariant testing for machine translation. In: Proc. of the 42nd ACM/IEEE Int’l Conf. on Software
                      Engineering. Seoul: ACM, 2020. 961–973. [doi: 10.1145/3377811.3380339]
                 [67]   He PJ, Meister C, Su ZD. Testing machine translation via referential transparency. In: Proc. of the 43rd IEEE/ACM Int’l Conf. on
                      Software Engineering. Madrid: IEEE, 2021. 410–422. [doi: 10.1109/ICSE43902.2021.00047]
                 [68]   Gupta S, He PJ, Meister C, Su ZD. Machine translation testing via pathological invariance. In: Proc. of the 28th ACM Joint Meeting
                      European Software Engineering Conf. and Symp. on the Foundations of Software Engineering. ACM, 2020. 863–875. [doi: 10.1145/
                      3368089.3409756]
                 [69]   Pesu D, Zhou ZQ, Zhen JF, Towey D. A Monte Carlo method for metamorphic testing of machine translation services. In: Proc. of the
                      3rd Int’l Workshop on Metamorphic Testing. Gothenburg: ACM, 2018. 38–45. [doi: 10.1145/3193977.3193980]
                 [70]   Zheng WJ, Wang WY, Liu D, Zhang CR, Zeng QS, Deng YT, Yang W, He PJ, Xie T. Testing untestable neural machine translation: An
                      industrial case. In: Proc. of the 41st IEEE/ACM Int’l Conf. on Software Engineering: Companion Proc. (ICSE-companion). Montreal:
                      IEEE, 2019. 314–315. [doi: 10.1109/ICSE-Companion.2019.00131]
                 [71]   Sun ZY, Zhang JM, Harman M, Papadakis M, Zhang L. Automatic testing and improvement of machine translation. In: Proc. of the
                      42nd ACM/IEEE Int’l Conf. on Software Engineering. Seoul: ACM, 2020. 974–985. [doi: 10.1145/3377811.3380420]
                 [72]   Sun ZY, Zhang JM, Xiong YF, Harman M, Papadakis M, Zhang L. Improving machine translation systems via isotopic replacement. In:
                      Proc. of the 44th Int’l Conf. on Software Engineering. Pittsburgh: ACM, 2022. 1181–1192. [doi: 10.1145/3510003.3510206]
                 [73]   Lee DTS, Zhou ZQ, Tse TH. Metamorphic robustness testing of Google translate. In: Proc. of the 42nd IEEE/ACM Int’l Conf. on
   94   95   96   97   98   99   100   101   102   103   104