Page 97 - 《软件学报》2026年第1期
P. 97
94 软件学报 2026 年第 37 卷第 1 期
动态环境适应性, 设计合理、效果优异的测试用例生成方法对于系统质量保障至关重要. 因此, 面向智能软件系统
的测试用例生成方法不仅具有良好的工程应用前景, 还在理论研究上展现出巨大的发展潜力, 预计将在未来的软
件工程等领域持续引领新的研究热点.
References
[1] Apple Inc. Apple’s Siri. 2025. https://www.apple.com/siri/
[2] Amazon.com, Inc. or its affiliates. Amazon’s cloud-based voice service. 2025. https://developer.amazon.com/en-US/alexa
[3] OpenAI. ChatGPT. 2025. https://chat.openai.com/
[4] Baidu. Baidu’s wenxin. 2025. https://yiyan.baidu.com/
[5] Waymo LLC. Waymo. 2025. https://waymo.com/intl/zh-cn/
[6] General Motors. Cruise self driving cars. 2025. https://getcruise.com/
[7] Huang CX, Cai HN, Xu LD, Xu BY, Gu YZ, Jiang LH. Data-driven ontology generation and evolution towards intelligent service in
manufacturing systems. Future Generation Computer Systems, 2019, 101: 197–207. [doi: 10.1016/j.future.2019.05.075]
[8] TED. Amazon alexa and devices division on pace to lose $10b. 2022. https://www.strata-gee.com/amazon-alexa-and-devices-division-
on-pace-to-lose-10b-div-in-crisis-mode/
[9] Smith L. Israel police mistakenly arrest Palestinian man for writing ‘good morning’ on Facebook. 2017. https://www.independent.co.uk/
news/uk/home-news/israel-police-palestinian-man-arrest-good-morning-facebook-page-translation-mistake-a8015626.html
[10] Thailand has threatened to take legal action against Facebook. 2020 (in Chinese). https://k.sina.cn/article_1949671172_
74359f0400100rsmq.html
[11] Ribeiro MT, Wu TS, Guestrin C, Singh S. Beyond accuracy: Behavioral testing of NLP models with checklist. arXiv:2005.04118, 2020.
[12] Rajpurkar P, Jia RB, Liang P. Know what you don’t know: Unanswerable questions for SQuAD. arXiv:1806.03822, 2018.
[13] Recht B, Roelofs R, Schmidt L, Shankar V. Do ImageNet classifiers generalize to ImageNet? In: Proc. of the 36th Int’l Conf. on
Machine Learning. Long Beach: PMLR, 2019. 5389–5400.
[14] Wu TS, Ribeiro MT, Heer J, Weld D. Errudite: Scalable, reproducible, and testable error analysis. In: Proc. of the 57th Annual Meeting
of the Association for Computational Linguistics. Florence: ACL, 2019. 747–763. [doi: 10.18653/v1/P19-1073]
[15] Chen SQ, Jin S, Xie XY. Validation on machine reading comprehension software without annotated labels: A property-based method.
In: Proc. of the 29th ACM Joint Meeting European Software Engineering Conf. and Symp. on the Foundations of Software Engineering.
Athens: ACM, 2021. 590–602. [doi: 10.1145/3468264.3468569]
[16] Zhang JM, Harman M, Ma L, Liu Y. Machine learning testing: Survey, landscapes and horizons. IEEE Trans. on Software Engineering,
2022, 48(1): 1–36. [doi: 10.1109/TSE.2019.2962027]
[17] Xiang WM, Musau P, Wild AA, Lopez DM, Hamilton N, Yang XD, Rosenfeld J, Johnson TT. Verification for machine learning,
autonomy, and neural networks survey. arXiv:1810.01989, 2019.
[18] Huang XW, Kroening D, Ruan WJ, Sharp J, Sun YC, Thamo E, Wu M, Yi XP. A survey of safety and trustworthiness of deep neural
networks: Verification, testing, adversarial attack and defence, and interpretability. Computer Science Review, 2020, 37: 100270. [doi:
10.1016/j.cosrev.2020.100270]
[19] Braiek HB, Khomh F. On testing machine learning programs. Journal of Systems and Software, 2020, 164: 110542. [doi: 10.1016/j.jss.
2020.110542]
[20] Wang Z, Yan M, Liu S, Chen JJ, Zhang DD, Wu Z, Chen X. Survey on testing of deep neural networks. Ruan Jian Xue Bao/Journal of
Software, 2020, 31(5): 1255–1275 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5951.htm [doi: 10.13328/j.cnki.
jos.005951]
[21] Vishnukumar HJ, Butting B, Müller C, Sax E. Machine learning and deep neural network—Artificial intelligence core for lab and real-
world test and validation for ADAS and autonomous vehicles: AI for efficient and quality test and validation. In: Proc. of the 2017
Intelligent Systems Conf. (IntelliSys). London: IEEE, 2017. 714–721. [doi: 10.1109/IntelliSys.2017.8324372]
[22] Pannu A. Artificial intelligence and its application in different areas. Artificial Intelligence, 2015, 4(10): 79–84.
[23] Dabre R, Chu CH, Kunchukuttan A. A survey of multilingual neural machine translation. ACM Computing Surveys, 2020, 53(5): 99.
[doi: 10.1145/3406095]
[24] Malik M, Malik MK, Mehmood K, Makhdoom I. Automatic speech recognition: A survey. Multimedia Tools and Applications, 2021,
80(6): 9411–9457. [doi: 10.1007/s11042-020-10073-7]
[25] Adamopoulou E, Moussiades L. An overview of chatbot technology. In: Proc. of the 16th IFIP WG 12.5 Int’l Conf. on Artificial

