Page 101 - 《软件学报》2026年第1期
P. 101
98 软件学报 2026 年第 37 卷第 1 期
2021. 1575–1579. [doi: 10.1145/3468264.3473124]
[94] Ji P, Feng Y, Liu J, Zhao ZH, Chen ZY. ASRTest: Automated testing for deep-neural-network-driven speech recognition systems. In:
Proc. of the 31st ACM SIGSOFT Int’l Symp. on Software Testing and Analysis. ACM, 2022. 189–201. [doi: 10.1145/3533767.
3534391]
[95] Yuen DHX, Pang AYC, Yang Z, Chong CY, Lim MK, Lo D. ASDF: A differential testing framework for automatic speech recognition
systems. arXiv:2302.05582, 2023.
[96] Rajan SS, Udeshi S, Chattopadhyay S. AequeVox: Automated fairness testing of speech recognition systems. In: Proc. of the 25th Int’l
Conf. on Fundamental Approaches to Software Engineering. Munich: Springer, 2022. 245–267. [doi: 10.1007/978-3-030-99429-7_14]
[97] Errattahi R, El Hannani A, Ouahmane H. Automatic speech recognition errors detection and correction: A review. Procedia Computer
Science, 2018, 128: 32–37. [doi: 10.1016/j.procs.2018.03.005]
[98] Chen XZ, Ma HM, Wan J, Li B, Xia T. Multi-view 3D object detection network for autonomous driving. In: Proc. of the 2017 IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017. 6526–6534. [doi: 10.1109/CVPR.2017.691]
[99] Guo YL, Wang HY, Hu QY, Liu H, Liu L, Bennamoun M. Deep learning for 3D point clouds: A survey. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 2021, 43(12): 4338–4364. [doi: 10.1109/TPAMI.2020.3005434]
[100] Yang B, Luo WJ, Urtasun R. PIXOR: Real-time 3D object detection from point clouds. In: Proc. of the 2018 IEEE/CVF Conf. on
Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 7652–7660. [doi: 10.1109/CVPR.2018.00798]
[101] Levinson J, Askeland J, Becker J, Dolson J, Held D, Kammel S, Kolter JZ, Langer D, Pink O, Pratt V, Sokolsky M, Stanek G, Stavens
D, Teichman A, Werling M, Thrun S. Towards fully autonomous driving: Systems and algorithms. In: Proc. of the 2011 IEEE Intelligent
Vehicles Symp. (IV). Baden-Baden: IEEE, 2011. 163–168. [doi: 10.1109/IVS.2011.5940562]
[102] Wang ZR, Yang CG, Ju ZJ, Li ZJ, Su CY. Preprocessing and transmission for 3D point cloud data. In: Proc. of the 10th Int’l Conf. on
Intelligent Robotics and Applications. Wuhan: Springer, 2017. 438–449. [doi: 10.1007/978-3-319-65289-4_42]
[103] Yue XY, Wu BC, Seshia SA, Keutzer K, Sangiovanni-Vincentelli AL. A LiDAR point cloud generator: From a virtual world to
autonomous driving. In: Proc. of the 2018 ACM Int’l Conf. on Multimedia Retrieval. Yokohama: ACM, 2018. 458–464. [doi: 10.1145/
3206025.3206080]
[104] Guo A, Feng Y, Chen ZY. LiRTest: Augmenting LiDAR point clouds for automated testing of autonomous driving systems. In: Proc. of
the 31st ACM SIGSOFT Int’l Symp. on Software Testing and Analysis. ACM, 2022. 480–492. [doi: 10.1145/3533767.3534397]
[105] Chao QW, Bi HK, Li WZ, Mao TL, Wang ZQ, Lin MC, Deng ZG. A survey on visual traffic simulation: Models, evaluations, and
applications in autonomous driving. Computer Graphics Forum, 2020, 39(1): 287–308. [doi: 10.1111/cgf.13803]
[106] O’Kelly M, Sinha A, Namkoong H, Duchi J, Tedrake R. Scalable end-to-end autonomous vehicle testing via rare-event simulation. In:
Proc. of the 32nd Int’l Conf. on Neural Information Processing Systems. Montréal: Curran Associates Inc., 2018. 9849–9860.
[107] Medrano-Berumen C, Akbaş MI. Abstract simulation scenario generation for autonomous vehicle verification. In: Proc. of the 2019
SoutheastCon. Huntsville: IEEE, 2019. 1–6. [doi: 10.1109/SoutheastCon42311.2019.9020575]
[108] Chao QW, Jin XG, Huang HW, Foong S, Yu LF, Yeung SK. Force-based heterogeneous traffic simulation for autonomous vehicle
testing. In: Proc. of the 2019 Int’l Conf. on Robotics and Automation (ICRA). Montreal: IEEE, 2019. 8298–8304. [doi: 10.1109/ICRA.
2019.8794430]
[109] Kim B, Masuda T, Shiraishi S. Test specification and generation for connected and autonomous vehicle in virtual environments. ACM
Trans. on Cyber-physical Systems, 2019, 4(1): 8. [doi: 10.1145/3311954]
[110] Han JC, Zhou ZQ. Metamorphic fuzz testing of autonomous vehicles. In: Proc. of the 42nd IEEE/ACM Int’l Conf. on Software
Engineering Workshops. Seoul: ACM, 2020. 380–385. [doi: 10.1145/3387940.3392252]
[111] Fremont DJ, Kim E, Pant YV, Seshia SA, Acharya A, Bruso X, Wells P, Lemke S, Lu Q, Mehta S. Formal scenario-based testing of
autonomous vehicles: From simulation to the real world. In: Proc. of the 23rd IEEE Int’l Conf. on Intelligent Transportation Systems.
Rhodes: IEEE, 2020. 1–8. [doi: 10.1109/ITSC45102.2020.9294368]
[112] Majumdar R, Mathur A, Pirron M, Stegner L, Zufferey D. PARACOSM: A test framework for autonomous driving simulations. In:
Proc. of the 24th Int’l Conf. Fundamental Approaches to Software Engineering. Luxembourg City: Springer, 2021. 172–195. [doi: 10.
1007/978-3-030-71500-7_9]
[113] Nguyen V, Huber S, Gambi A. SALVO: Automated generation of diversified tests for self-driving cars from existing maps. In: Proc. of
the 2021 IEEE Int’l Conf. on Artificial Intelligence Testing. Oxford: IEEE, 2021. 128–135. [doi: 10.1109/AITEST52744.2021.00033]
[114] Li CW, Cheng CH, Sun TT, Chen YH, Yan RJ. ComOpT: Combination and optimization for testing autonomous driving systems. In:
Proc. of the 2022 Int’l Conf. on Robotics and Automation. Philadelphia: IEEE, 2022. 7738–7744. [doi: 10.1109/ICRA46639.2022.
9811794]

