Page 348 - 《软件学报》2025年第7期
P. 348

曹艺 等: 融合扩增技术的无监督域适应方法                                                           3269


                 [40]  Zhang Z, Wang MZ, Huang Y, Nehorai A. Aligning infinite-dimensional covariance matrices in reproducing kernel Hilbert spaces for
                     domain adaptation. In: Proc. of the 2018 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018.
                     3437–3445. [doi: 10.1109/CVPR.2018.00362]
                 [41]  Bousmalis K, Trigeorgis G, Silberman N, Krishnan D, Erhan D. Domain separation networks. In: Proc. of the 30th Int’l Conf. on Neural
                     Information Processing Systems. Barcelona: Curran Associates Inc., 2016. 343–351.
                 [42]  Cicek S, Soatto S. Unsupervised domain adaptation via regularized conditional alignment. In: Proc. of the 2019 IEEE/CVF Int’l Conf. on
                     Computer Vision. Seoul: IEEE, 2019. 1416–1425. [doi: 10.1109/ICCV.2019.00150]
                 [43]  Vu  TH,  Jain  H,  Bucher  M,  Cord  M,  Pérez  P.  ADVENT:  Adversarial  entropy  minimization  for  domain  adaptation  in  semantic
                     segmentation. In: Proc. of the 2019 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019. 2512–2521.
                     [doi: 10.1109/CVPR.2019.00262]
                 [44]  Tzeng E, Hoffman J, Saenko K, Darrell T. Adversarial discriminative domain adaptation. In: Proc. of the 2017 IEEE Conf. on Computer
                     Vision and Pattern Recognition. Honolulu: IEEE, 2017. 2962–2971. [doi: 10.1109/CVPR.2017.316]
                 [45]  Liu MY, Tuzel O. Coupled generative adversarial networks. In: Proc. of the 30th Int’l Conf. on Neural Information Processing Systems.
                     Barcelona: Curran Associates Inc., 2016. 469–477.
                 [46]  Ghifary M, Kleijn WB, Zhang MJ, Balduzzi D, Li W. Deep reconstruction-classification networks for unsupervised domain adaptation.
                     In: Proc. of the 14th European Conf. on Computer Vision. Amsterdam: Springer, 2016. 597–613. [doi: 10.1007/978-3-319-46493-0_36]
                 [47]  Zhang Y, Chen RR, Zhang J. Safe Tri-training algorithm based on cross entropy. Journal of Computer Research and Development, 2021,
                     58(1): 60–69 (in Chinese with English abstract). [doi: 10.7544/issn1000-1239.2021.20190838]
                 [48]  Bošnjak  M,  Richemond  PH,  Tomasev  N,  Strub  F,  Walker  JC,  Hill  F,  Buesing  LH,  Pascanu  R,  Blundell  C,  Mitrovic  J.  SemPPL:
                     Predicting  pseudo-labels  for  better  contrastive  representations.  In:  Proc.  of  the  11th  Int’l  Conf.  on  Learning  Representations.  Kigali:
                     OpenReview.net, 2023.
                 [49]  Shi WW, Gong YH, Ding C, Ma ZH, Tao XY, Zheng NN. Transductive semi-supervised deep learning using min-max features. In:
                     Ferrari V, Hebert M, eds. Proc. of the 15th European Conf. on Computer Vision. Munich: Springer, 2018. 311–327. [doi: 10.1007/978-3-
                     030-01228-1_19]
                 [50]  Rizve MN, Duarte K, Rawat YS, Shah M. In defense of pseudo-labeling: An uncertainty-aware pseudo-label selection framework for
                     semi-supervised learning. In: Proc. of the 2021 Int’l Conf. on Learning Representations. Vienna: OpenReview.net, 2021. 1–20.
                 [51]  Laine S, Aila T. Temporal ensembling for semi-supervised learning. In: Proc. of the 5th Int’l Conf. on Learning Representations. Toulon:
                     OpenReview.net, 2016.
                 [52]  Cubuk ED, Zoph B, Mané D, Vasudevan V, Le QV. AutoAugment: Learning augmentation strategies from data. In: Proc. of the 2019
                     IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019. 113–123. [doi: 10.1109/CVPR.2019.00020]
                 [53]  Xie QZ, Dai ZH, Hovy E, Luong MT, Le QV. Unsupervised data augmentation for consistency training. In: Proc. of the 34th Int’l Conf.
                     on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2020. 525.
                 [54]  Berthelot D, Carlini N, Goodfellow I, Oliver A, Papernot N, Raffel CA. MixMatch: A holistic approach to semi-supervised learning. In:
                     Proc. of the 33rd Int’l Conf. on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2019. 454.
                 [55]  Miyato  T,  Maeda  SI,  Koyama  M,  Ishii  S.  Virtual  adversarial  training:  A  regularization  method  for  supervised  and  semi-supervised
                     learning. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2019, 41(8): 1979–1993. [doi: 10.1109/TPAMI.2018.2858821]
                 [56]  Tarvainen  A,  Valpola  H.  Mean  teachers  are  better  role  models:  Weight-averaged  consistency  targets  improve  semi-supervised  deep
                     learning results. In: Proc. of the 31st Int’l Conf. on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017.
                     1195–1204.
                 [57]  LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc. of the IEEE, 1998, 86(11):
                     2278–2324. [doi: 10.1109/5.726791]
                 [58]  Hull JJ. A database for handwritten text recognition research. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1994, 16(5):
                     550–554. [doi: 10.1109/34.291440]
                 [59]  Netzer Y, Wang T, Coates A, Bissacco A, Wu B, Ng AY. Reading digits in natural images with unsupervised feature learning. In: Proc.
                     of the 2011 NIPS Workshop on Deep Learning and Unsupervised Feature Learning. Granada: NIPS, 2011. 5–13.
                 [60]  Venkateswara H, Eusebio J, Chakraborty S, Panchanathan S. Deep hashing network for unsupervised domain adaptation. In: Proc. of the
                     2017 IEEE Conf. on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 5385–5394. [doi: 10.1109/CVPR.2017.572]
                 [61]  Saito K, Watanabe K, Ushiku Y, Harada T. Maximum classifier discrepancy for unsupervised domain adaptation. In: Proc. of the 2018
                     IEEE/CVF  Conf.  on  Computer  Vision  and  Pattern  Recognition.  Salt  Lake  City:  IEEE,  2018.  3723–3732.  [doi:  10.1109/CVPR.2018.
                     00392]
   343   344   345   346   347   348   349   350   351   352   353