Page 347 - 《软件学报》2025年第7期
P. 347

3268                                                       软件学报  2025  年第  36  卷第  7  期


                     on Applications of Computer Vision. Lake Tahoe: IEEE, 2018. 1982–1991. [doi: 10.1109/WACV.2018.00219]
                 [17]  Long  MS,  Cao  ZJ,  Wang  JM,  Jordan  MI.  Conditional  adversarial  domain  adaptation.  In:  Proc.  of  the  32nd  Int’l  Conf.  on  Neural
                     Information Processing Systems. Red Hook: Curran Associates Inc., 2018. 1647–1657.
                 [18]  Cui SH, Wang SH, Zhuo JB, Su C, Huang QM, Tian Q. Gradually vanishing bridge for adversarial domain adaptation. In: Proc. of the
                     2020 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020. 12452–12461.
                 [19]  Wang XM, Li L, Ye WR, Long MS, Wang JM. Transferable attention for domain adaptation. In: Proc. of the 33rd AAAI Conf. on
                     Artificial Intelligence. AAAI Press, 2019. 655. [doi: 10.1609/aaai.v33i01.33015345]
                 [20]  Matsuura T, Harada T. Domain generalization using a mixture of multiple latent domains. In: Proc. of the 34th AAAI Conf. on Artificial
                     Intelligence. New York: AAAI Press, 2020. 11749–11756. [doi: 10.1609/aaai.v34i07.6846]
                 [21]  Wei YY, Zhang Z, Wang Y, Xu ML, Yang Y, Yan SC, Wang M. DerainCycleGAN: Rain attentive CycleGAN for single image deraining
                     and rainmaking. IEEE Trans. on Image Processing, 2021, 30: 4788–4801. [doi: 10.1109/TIP.2021.3074804]
                 [22]  Gao R, Hou XS, Qin J, Chen JX, Liu L, Zhu F, Zhang Z, Shao L. Zero-VAE-GAN: Generating unseen features for generalized and
                     transductive zero-shot learning. IEEE Trans. on Image Processing, 2020, 29: 3665–3680. [doi: 10.1109/TIP.2020.2964429]
                 [23]  Gao  XJ,  Zhang  Z,  Mu  TT,  Zhang  XD,  Cui  CR,  Wang  M.  Self-attention  driven  adversarial  similarity  learning  network.  Pattern
                     Recognition, 2020, 105: 107331. [doi: 10.1016/j.patcog.2020.107331]
                 [24]  Pei ZY, Cao ZJ, Long MS, Wang JM. Multi-adversarial domain adaptation. In: Proc. of the 32nd Conf. on Artificial Intelligence. New
                     Orleans: AAAI Press, 2018. 3934–3941. [doi: 10.1609/aaai.v32i1.11767]
                 [25]  Zhang WC, Xu D, Ouyang WL, Li W. Self-paced collaborative and adversarial network for unsupervised domain adaptation. IEEE Trans.
                     on Pattern Analysis and Machine Intelligence, 2021, 43(6): 2047–2061. [doi: 10.1109/TPAMI.2019.2962476]
                 [26]  Long  MS,  Zhu  H,  Wang  JM,  Jordan  MI.  Deep  transfer  learning  with  joint  adaptation  networks.  In:  Proc.  of  the  34th  Int’l  Conf.  on
                     Machine Learning. Sydney: PMLR, 2017. 2208–2217.
                 [27]  Kang GL, Jiang L, Yang Y, Hauptmann AG. Contrastive adaptation network for unsupervised domain adaptation. In: Proc. of the 2019
                     IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019. 4888–4897. [doi: 10.1109/CVPR.2019.00503]
                 [28]  Chen MH, Zhao S, Liu HF, Cai D. Adversarial-learned loss for domain adaptation. In: Proc. of the 34th Conf. on Artificial Intelligence.
                     New York: AAAI Press, 2020. 3521–3528. [doi: 10.1609/aaai.v34i04.5757]
                 [29]  Saito K, Ushiku Y, Harada T. Asymmetric tri-training for unsupervised domain adaptation. In: Proc. of the 34th Int’l Conf. on Machine
                     Learning. Sydney: JMLR.org, 2017. 2988–2997.
                 [30]  Xie SA, Zheng ZB, Chen L, Chen C. Learning semantic representations for unsupervised domain adaptation. In: Proc. of the 35th Int’l
                     Conf. on Machine Learning. Stockholm: PMLR, 2018. 5419–5428.
                 [31]  Chen CQ, Xie WP, Huang WB, Rong Y, Ding XH, Huang Y, Xu TY, Huang JZ. Progressive feature alignment for unsupervised domain
                     adaptation. In: Proc. of the 2019 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019. 627–636. [doi:
                     10.1109/CVPR.2019.00072]
                 [32]  Pan YW, Yao T, Li YH, Wang Y, Ngo CW, Mei T. Transferrable prototypical networks for unsupervised domain adaptation. In: Proc. of
                     the 2019 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019. 2234–2242. [doi: 10.1109/CVPR.
                     2019.00234]
                 [33]  Zou Y, Yu ZD, Kumar BVK, Wang JS. Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In:
                     Proc. of the 15th European Conf. on Computer Vision. Munich: Springer, 2018. 297–313. [doi: 10.1007/978-3-030-01219-9_18]
                 [34]  Wang Q, Breckon T. Unsupervised domain adaptation via structured prediction based selective pseudo-labeling. In: Proc. of the 34th
                     Conf. on Artificial Intelligence. New York: AAAI Press, 2020. 6243–6250. [doi: 10.1609/aaai.v34i04.6091]
                 [35]  Patel VM, Gopalan R, Li RN, Chellappa R. Visual domain adaptation: A survey of recent advances. IEEE Signal Processing Magazine,
                     2015, 32(3): 53–69. [doi: 10.1109/MSP.2014.2347059]
                 [36]  Rahman MM, Fookes C, Baktashmotlagh M, Sridharan S. On minimum discrepancy estimation for deep domain adaptation. In: Singh R,
                     Vatsa M, Patel V, Ratha N, eds. Domain Adaptation for Visual Understanding. Cham: Springer, 2020. 81–94. [doi: 10.1007/978-3-030-
                     30671-7_6]
                 [37]  Morerio P, Cavazza J, Murino V. Minimal-entropy correlation alignment for unsupervised deep domain adaptation. In: Proc. of the 6th Int’l
                     Conf. on Learning Representations. Vancouver: OpenReview.net, 2018.
                 [38]  Zhuang FZ, Cheng XH, Luo P, Pan SJ, He Q. Supervised representation learning: Transfer learning with deep autoencoders. In: Proc. of
                     the 24th Int’l Joint Conf. on Artificial Intelligence. Buenos: AAAI Press, 2015. 4119–4125.
                 [39]  Zhang  Y,  Wang  NB,  Cai  SB,  Song  L.  Unsupervised  domain  adaptation  by  mapped  correlation  alignment.  IEEE  Access,  2018,  6:
                     44698–44706. [doi: 10.1109/access.2018.2865249]
   342   343   344   345   346   347   348   349   350   351   352