Page 482 - 《软件学报》2025年第5期
P. 482

2382                                                       软件学报  2025  年第  36  卷第  5  期


                 4
                 (Peng Cheng Laboratory, Shenzhen 518055, China)
                 Abstract:  In  recent  years,  research  on  the  interconnect  technology  of  superconducting  qubits  has  made  important  progress,  providing  an
                 effective  way  to  build  a  distributed  computing  architecture  for  superconducting  quantum  computers.  The  distributed  superconducting
                 architecture  imposes  strict  constraints  on  the  execution  of  quantum  circuits  in  terms  of  network  topology,  qubit  connectivity,  and  quantum
                 state  transfer  protocols.  To  execute  and  schedule  quantum  circuits  on  a  distributed  architecture,  the  circuit  mapping  process  is  required  to
                 transform the quantum circuits to adapt to the underlying architecture and then to distribute the transformed circuits to multiple QPUs. The
                 distributed  circuit  mapping  process  necessitates  the  insertion  of  additional  quantum  operations  into  the  original  circuit.  Such  operations,
                 especially the inter-QPU state transfer operations, are susceptible to noise, leading to high error rates. Therefore, minimizing the number of
                 such  additional  operations  inserted  by  the  mapping  process  is  critical  to  improving  the  overall  computation  success  rate.  This  study
                 constructs  an  abstract  model  of  distributed  quantum  computing  based  on  the  technical  features  of  the  interconnect  technology  of
                 superconducting  qubits  and  today’s  superconducting  QPUs.  Moreover,  this  study  proposes  a  distributed  quantum  circuit  mapping  approach
                 based  on  this  abstract  model.  The  proposed  approach  consists  of  two  main  components  the  distributed  qubit  mapping  algorithm  and  the
                 qubit  state  routing  algorithm.  The  former  formulates  the  problem  of  distributing  qubits  to  different  QPUs  as  a  combinatorial  optimization
                 problem  and  employs  simulated  annealing  enhanced  with  local  search  to  find  the  initial  mapping  that  brings  the  optimal  total  routing  cost.
                 The  latter  constructs  several  heuristic  qubit  routing  rules  for  different  scenarios  and  integrates  them  systematically  to  minimize  the
                 additional  operations  inserted  by  the  mapping  process.  The  abstract  model  shields  any  technical  details  of  the  underlying  architecture  that
                 are  irrelevant  to  circuit  mapping,  which  makes  the  mapping  method  applicable  to  a  class  of  such  networks  rather  than  a  specific  one.
                 Moreover,  the  approach  proposed  in  this  study  can  be  used  as  an  ancillary  tool  to  design  and  evaluate  the  network  topology  of  distributed
                 systems.  The  experimental  results  show  that,  compared  to  the  baseline  approach,  the  proposed  approach  reduces  the  number  of  intra-chip
                 operations  (SWAP  gates)  and  inter-chip  operations  (ST  gates)  by  69.69%  and  85.88%  on  average,  respectively,  with  a  time  overhead
                 similar to existing algorithms.
                 Key words:  superconducting quantum computing; quantum network; distributed computing; quantum processing unit (QPU); quantum circuit
                         mapping
                    超导电路    [1] 是目前实现量子计算技术所用的主流技术路线之一. 近年来, 超导量子技术发展势头迅猛, 超导量
                 子处理器   (quantum processing unit, QPU) 包含的量子比特数迅速增加, 以    IBM  为例, 其最新超导    QPU  已达到  127
                 个量子比特的规模, 并预计在         2023  年达到  1 000  的规模. 现有的超导  QPU  已在量子随机线路采样等实验上初步展
                 示了量子计算优势       [2−5] , 但仍难以实现  QEC (quantum error correction) 技术. 容错量子计算需要更多的量子比特资
                 源, 但由于制冷、控制、布线、噪声抑制、以及芯片制造等多方面的限制, 仅通过扩展单个超导芯片内可容纳的
                 量子比特数难以满足容错计算的资源需求               [6] . 在此背景下, 分布式计算模式为持续扩展超导量子计算规模提供了
                 另外一种可行途径      [7,8] . 近年来, 超导量子互连技术的研究      [9−16] 取得了重要进展, 这些研究为超导量子比特间的交互
                 提供了一种短程的量子通信信道. 在这类互连技术的协助下, 多个处于不同稀释制冷机中的超导                              QPU  可以连接在
                 一起, 从而形成分布式量子计算架构. 分布式架构可以提供超过单个                      QPU  容量的量子计算服务, IBM、Google、
                 以及  Rigetti 等公司均在其量子计算发展路线里对分布式架构做了规划.
                    量子计算任务一般以量子线路的形式表达, 在分布式量子计算架构上执行量子线路时, 需要将量子线路中包
                 含的量子比特映射至架构中特定            QPU  的物理量子比特上, 并以遵循底层物理约束的方式按需在                    QPU  间以及
                 QPU  内移动量子态和执行量子门. 该处理过程被称为分布式量子线路映射. 单个                       QPU  上的量子线路映射问题已
                 被证明是   NP  完全的  [17,18] , 而分布式架构上的量子线路映射不仅要考虑每个            QPU  施加的物理约束, 还要同时考虑
                 底层通信机制所施加的物理约束, 因此其复杂性更高. 虽然目前存在一些分布式量子线路映射的研究                               [19−24] , 但是这
                 些研究均面向一种基于量子因特网            (quantum Internet) [25] 的分布式计算模型. 和分布式超导架构所用的互连技术不
                 同, 量子因特网使用量子隐形传态          (quantum teleportation) 技术  [26] 在  QPU  间传输数据, 该技术主要面向远程量子通
                 信场景, 而非量子计算场景, 其在传输效率、保真度、以及时延等方面难以达到协同量子计算的要求. 另外, 在这
                 种模型中, 任意两个      QPU  均是直接连通的, 且    QPU  内的任意一对量子比特也是直接连通的, 这种全连通性在超导
                 量子计算技术下是难以实现的. 因此, 这种分布式模型过于理想化, 既不适用于量子计算场景, 也不符合超导量子
                 计算设备和超导量子互连技术的发展现状. 相应的, 基于该分布式模型的量子线路映射方法无法直接应用于分布
   477   478   479   480   481   482   483   484   485   486   487