Page 493 - 《软件学报》2025年第4期
P. 493

李庚松 等: 无人机多传感器数据融合研究综述                                                          1899


                      1016/j.inffus.2019.12.001]
                 [26]  Kalman RE. A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 1960, 82(1): 35–45. [doi: 10.
                      1115/1.3662552]
                 [27]  Spurny  V,  Pritzl  V,  Walter  V,  Petrlik  M,  Baca  T,  Stepan  P,  Zaitlik  D,  Saska  M.  Autonomous  firefighting  inside  buildings  by  an
                      unmanned aerial vehicle. IEEE Access, 2021, 9: 15872–15890. [doi: 10.1109/ACCESS.2021.3052967]
                 [28]  Mei CB, Fan ZH, Zhu QJ, Yang PX, Hou ZH, Jin HL. A novel scene matching navigation system for UAVs based on vision/inertial
                      fusion. IEEE Sensors Journal, 2023, 23(6): 6192–6203. [doi: 10.1109/JSEN.2023.3241330]
                 [29]  Cui C, Zhao JK. Observability analysis based on QR decomposition and adaptive information fusion mechanism for low-cost multi-rotor
                      UAVs. IEEE Sensors Journal, 2022, 22(6): 5939–5951. [doi: 10.1109/JSEN.2022.3149866]
                 [30]  Xiong K, Zhou P, Wei CL. Autonomous navigation of unmanned aircraft using space target LOS measurements and QLEKF. Sensors,
                      2022, 22(18): 6992. [doi: 10.3390/s22186992]
                 [31]  Julier  S,  Uhlmann  J,  Durrant-Whyte  HF.  A  new  method  for  the  nonlinear  transformation  of  means  and  covariances  in  filters  and
                      estimators. IEEE Trans. on Automatic Control, 2000, 45(3): 477–482. [doi: 10.1109/9.847726]
                 [32]  Julier SJ, Uhlmann JK. Unscented filtering and nonlinear estimation. Proc. of the IEEE, 2004, 92(3): 401–422. [doi: 10.1109/JPROC.
                      2003.823141]
                 [33]  Peng J, Zhang P, Zheng LX, Tan J. UAV positioning based on multi-sensor fusion. IEEE Access, 2020, 8: 34455–34467. [doi: 10.1109/

                      ACCESS.2020.2974285]
                 [34]  Guo  K,  Ye  ZS,  Liu  DT,  Peng  XY.  UAV  flight  control  sensing  enhancement  with  a  data-driven  adaptive  fusion  model.  Reliability
                      Engineering & System Safety, 2021, 213: 107654. [doi: 10.1016/j.ress.2021.107654]
                 [35]  Arasaratnam I, Haykin S. Cubature Kalman filters. IEEE Trans. on Automatic Control, 2009, 54(6): 1254–1269. [doi: 10.1109/TAC.
                      2009.2019800]
                 [36]  Ge QB, Cheng Y, Yao G, Chen S, Zhu Y. Credible Gaussian sum cubature Kalman filter based on non-Gaussian characteristic analysis.
                      Neurocomputing, 2024, 565: 126922. [doi: 10.1016/j.neucom.2023.126922]
                 [37]  Gao BB, Hu GG, Zhong YM, Zhu XH. Cubature rule-based distributed optimal fusion with identification and prediction of kinematic
                      model error for integrated UAV navigation. Aerospace Science and Technology, 2021, 109: 106447. [doi: 10.1016/j.ast.2020.106447]
                 [38]  Solà J. Quaternion kinematics for the error-state Kalman filter. arXiv:1711.02508, 2017.
                 [39]  Zhao XX, Meng Y, Qi F, Wang L, Zhu XY. A vertical channel-enhanced fusion method based on RINS and barometric altimeter for
                      UAVs in GNSS denial environments. IEEE Trans. on Instrumentation and Measurement, 2023, 72: 8504212. [doi: 10.1109/TIM.2023.
                      3284018]
                 [40]  Cheng SY. Unscented transformation and unscented Kalman filtering. Computer Engineering and Applications, 2008, 44(24): 25–35 (in
                      Chinese with English abstract). [doi: 10.3778/j.issn.1002-8331.2008.24.008]
                 [41]  Zhang  HH,  Liu  X,  Chen  FH,  Li  WB  Zhang  JH.  Research  and  development  of  SLAM  back-end  optimization  based  on  graph
                      optimization. Application Research of Computers 2019, 36(1): 11–17 (in Chinese with English abstract). [doi: 10.19734/j.issn.1001-
                      3695.2017.12.0842]
                 [42]  Abaspur Kazerouni I, Fitzgerald L, Dooly G, Toal D. A survey of state-of-the-art on visual SLAM. Expert Systems with Applications,
                      2022, 205: 117734. [doi: 10.1016/j.eswa.2022.117734]
                 [43]  Tian Y, Yue H, Yang B, Ren J. Unmanned aerial vehicle visual simultaneous localization and mapping: A survey. Journal of Physics:
                      Conf. Series, 2022, 2278(1): 012006. [doi: 10.1088/1742-6596/2278/1/012006]
                 [44]  Gupta A, Fernando X. Simultaneous localization and mapping (SLAM) and data fusion in unmanned aerial vehicles: Recent advances
                      and challenges. Drones, 2022, 6(4): 85. [doi: 10.3390/drones6040085]
                 [45]  Li YT, Mu RJ, Shan YZ. A survey of visual SLAM in unmanned systems. Control and Decision, 2021, 36(3): 513–522 (in Chinese with
                      English abstract). [doi: 10.13195/j.kzyjc.2019.1149]
                 [46]  Brown  DC.  A  solution  to  the  general  problem  of  multiple  station  analytical  stereotriangulation.  1958.  https://digital.hagley.org/
                      08206139_solution
                 [47]  Lu F, Milios E. Globally consistent range scan alignment for environment mapping. Autonomous Robots, 1997, 4(4): 333–349. [doi: 10.
                      1023/A:1008854305733]
                 [48]  Kschischang FR, Frey BJ, Loeliger HA. Factor graphs and the sum-product algorithm. IEEE Trans. on Information Theory, 2001, 47(2):
                      498–519. [doi: 10.1109/18.910572]
                 [49]  Shi JY, Zha FS, Sun LN, Guo W, Wang PF, Li MT. A survey of visual-inertial SLAM for mobile robots. Robot, 2020, 42(6): 734–748
                      (in Chinese with English abstract). [doi: 10.13973/j.cnki.robot.190685]
                 [50]  Qin T, Li PL, Shen SJ. VINS-Mono: A robust and versatile monocular visual-inertial state estimator. IEEE Trans. on Robotics, 2018,
                      34(4): 1004–1020. [doi: 10.1109/TRO.2018.2853729]
   488   489   490   491   492   493   494   495   496   497   498