Page 496 - 《软件学报》2025年第4期
P. 496

1902                                                       软件学报  2025  年第  36  卷第  4  期


                 [98]  Du H, Wang W, Xu CW, Xiao R, Sun CY. Real-time onboard 3D state estimation of an unmanned aerial vehicle in multi-environments
                      using multi-sensor data fusion. Sensors, 2020, 20(3): 919. [doi: 10.3390/s20030919]
                 [99]  Lee JC, Chen CC, Shen CT, Lai YC. Landmark-based scale estimation and correction of visual inertial odometry for VTOL UAVs in a
                      GPS-denied environment. Sensors, 2022, 22(24): 9654. [doi: 10.3390/s22249654]
                 [100]  Dong X, Gao YZ, Guo JL, Zuo SY, Xiang JW, Li DC, Tu Z. An integrated UWB-IMU-vision framework for autonomous approaching
                      and landing of UAVs. Aerospace, 2022, 9(12): 797. [doi: 10.3390/aerospace9120797]
                 [101]  Zhang KY, Chen PP, Ma TB, Gao SW. On-demand precise tracking for energy-constrained UAVs in underground coal mines. IEEE
                      Trans. on Instrumentation and Measurement, 2022, 71: 5500814. [doi: 10.1109/TIM.2022.3146925]
                 [102]  Xu XG, Fan LL, Li ZH, Meng Y, Feng HK, Yang H, Xu B. Estimating leaf nitrogen content in corn based on information fusion of
                      multiple-sensor imagery from UAV. Remote Sensing, 2021, 13(3): 340. [doi: 10.3390/rs13030340]
                 [103]  Li JT, Schachtman DP, Creech CF, Wang L, Ge YF, Shi YY. Evaluation of UAV-derived multimodal remote sensing data for biomass
                      prediction and drought tolerance assessment in bioenergy sorghum. The Crop Journal, 2022, 10(5): 1363–1375. [doi: 10.1016/j.cj.2022.
                      04.005]
                 [104]  Cheng MH, Jiao XY, Liu YD, Shao MC, Yu X, Bai Y, Wang ZX, Wang SY, Tuohuti N, Liu SB, Shi L, Yin DM, Huang X, Nie CW, Jin
                      XL.  Estimation  of  soil  moisture  content  under  high  maize  canopy  coverage  from  UAV  multimodal  data  and  machine  learning.
                      Agricultural Water Management, 2022, 264: 107530. [doi: 10.1016/j.agwat.2022.107530]
                 [105]  Zhang SH, Duan JZ, He L, Jing YH, Schulthess UC, Lashkari A, Guo TC, Wang YH, Feng W. Wheat yield estimation from UAV
                      platform based on multi-modal remote sensing data fusion. Acta Agronomica Sinica, 2022, 48(7): 1746–1760 (in Chinese with English
                      abstract). [doi: 10.3724/SP.J.1006.2022.11053]
                 [106]  Zhang Y, Yang YZ, Zhang QW, Duan RQ, Liu JQ, Qin YC, Wang XZ. Toward multi-stage phenotyping of soybean with multimodal
                      UAV sensor data: A comparison of machine learning approaches for leaf area index estimation. Remote Sensing, 2022, 15(1): 7. [doi: 10.
                      3390/rs15010007]
                 [107]  Zhang  LC,  Sun  BS,  Zhao  DN,  Shan  CF,  Wang  GB,  Song  CC,  Chen  PC,  Lan  YB.  Prediction  of  cotton  FPAR  and  construction  of
                      defoliation  spraying  prescription  map  based  on  multi-source  UAV  images.  Computers  and  Electronics  in  Agriculture,  2024,  220:
                      108897. [doi: 10.1016/j.compag.2024.108897]
                 [108]  Wu S, Deng L, Guo LJ, Wu YJ. Wheat leaf area index prediction using data fusion based on high-resolution unmanned aerial vehicle
                      imagery. Plant Methods, 2022, 18(1): 68. [doi: 10.1186/s13007-022-00899-7]
                 [109]  Liu SB, Jin XL, Nie CW, Wang SY, Yu X, Cheng MH, Shao MC, Wang ZX, Tuohuti N, Bai Y, Liu YD. Estimating leaf area index
                      using unmanned aerial vehicle data: Shallow vs. deep machine learning algorithms. Plant Physiology, 2021, 187(3): 1551–1576. [doi: 10.
                      1093/plphys/kiab322]
                 [110]  Xia FL, Quan LZ, Lou ZX, Sun D, Li HL, Lv XL. Identification and comprehensive evaluation of resistant weeds using unmanned
                      aerial vehicle-based multispectral imagery. Frontiers in Plant Science, 2022, 13: 938604. [doi: 10.3389/fpls.2022.938604]
                 [111]  Ma JC, Liu BH, Ji L, Zhu ZC, Wu YF, Jiao WH. Field-scale yield prediction of winter wheat under different irrigation regimes based on
                      dynamic fusion of multimodal UAV imagery. Int’l Journal of Applied Earth Observation and Geoinformation, 2023, 118: 103292. [doi:
                      10.1016/j.jag.2023.103292]
                 [112]  Xu  R,  Li  CY,  Bernardes  S.  Development  and  testing  of  a  UAV-based  multi-sensor  system  for  plant  phenotyping  and  precision
                      agriculture. Remote Sensing, 2021, 13(17): 3517. [doi: 10.3390/rs13173517]
                 [113]  López A, Jurado JM, Ogayar CJ, Feito FR. A framework for registering UAV-based imagery for crop-tracking in precision agriculture.
                      Int’l Journal of Applied Earth Observation and Geoinformation, 2021, 97: 102274. [doi: 10.1016/j.jag.2020.102274]
                 [114]  Ni M, Wang HJ, Liu XD, Liao YL, Fu L, Wu QQ, Mu J, Chen XY, Li J. Design of variable spray system for plant protection UAV
                      based on CFD simulation and regression analysis. Sensors, 2021, 21(2): 638. [doi: 10.3390/s21020638]
                 [115]  Almeida  DRAD,  Broadbent  EN,  Ferreira  MP,  et  al.  Monitoring  restored  tropical  forest  diversity  and  structure  through  UAV-borne
                      hyperspectral and LiDAR fusion. Remote Sensing of Environment, 2021, 264: 112582. [doi: 10.1016/j.rse.2021.112582]
                 [116]  Campbell MJ, Dennison PE, Tune JW, Kannenberg SA, Kerr KL, Codding BF, Anderegg WRL. A multi-sensor, multi-scale approach to
                      mapping tree mortality in woodland ecosystems. Remote Sensing of Environment, 2020, 245: 111853. [doi: 10.1016/j.rse.2020.111853]
                 [117]  Tauro F, Maltese A, Giannini R, Harfouche A. Latent heat flux variability and response to drought stress of black poplar: A multi-
                      platform multi-sensor remote and proximal sensing approach to relieve the data scarcity bottleneck. Remote Sensing of Environment,
                      2022, 268: 112771. [doi: 10.1016/j.rse.2021.112771]
                 [118]  Moradi F, Javan FD, Samadzadegan F. Potential evaluation of visible-thermal UAV image fusion for individual tree detection based on
                      convolutional neural network. Int’l Journal of Applied Earth Observation and Geoinformation, 2022, 113: 103011. [doi: 10.1016/j.jag.
                      2022.103011]
                 [119]  Zhong H, Zhang ZY, Liu HR, Wu JZ, Lin WS. Individual tree species identification for complex coniferous and broad-leaved mixed
   491   492   493   494   495   496   497   498   499   500   501