Page 494 - 《软件学报》2025年第4期
P. 494

1900                                                       软件学报  2025  年第  36  卷第  4  期


                 [51]  Qin  T,  Cao  SZ,  Pan  J,  Shen  SJ.  A  general  optimization-based  framework  for  global  pose  estimation  with  multiple  sensors.
                      arXiv:1901.03642, 2019.
                 [52]  Zhang HJ, Ma JY, Liu HY, Guo P, Deng HC, Xu K, Ding XL. Indoor positioning technology of multi-rotor flying robot based on visual-
                      inertial fusion. Acta Aeronautica et Astronautica Sinica, 2023, 44(5): 426964 (in Chinese with English abstract). [doi: 10.7527/S1000-
                      6893.2022.26964]
                 [53]  Lin HY, Zhan JR. GNSS-denied UAV indoor navigation with UWB incorporated visual inertial odometry. Measurement, 2023, 206:
                      112256. [doi: 10.1016/j.measurement.2022.112256]
                 [54]  Henawy J, Li ZG, Yau WY, Seet G. Accurate IMU factor using switched linear systems for VIO. IEEE Trans. on Industrial Electronics,
                      2021, 68(8): 7199–7208. [doi: 10.1109/TIE.2020.3000097]
                 [55]  Sankey JB, Sankey TT, Li J, Ravi S, Wang G, Caster J, Kasprak A. Quantifying plant-soil-nutrient dynamics in rangelands: Fusion of
                      UAV hyperspectral-LiDAR, UAV multispectral-photogrammetry, and ground-based LiDAR-digital photography in a shrub-encroached
                      desert grassland. Remote Sensing of Environment, 2021, 253: 112223. [doi: 10.1016/j.rse.2020.112223]
                 [56]  Elamin  A,  El-Rabbany  A.  UAV-based  multi-sensor  data  fusion  for  urban  land  cover  mapping  using  a  deep  convolutional  neural
                      network. Remote Sensing, 2022, 14(17): 4298. [doi: 10.3390/rs14174298]
                 [57]  Gao S, Yuan XP, Gan S, Yang YF, Yuan XY. Experimental study on precise recognition of settlements in mountainous areas based on
                      UAV image and LiDAR point cloud. Journal of the Indian Society of Remote Sensing, 2022, 50(10): 1827–1840. [doi: 10.1007/s12524-

                      022-01548-1]
                 [58]  Motayyeb S, Samadzedegan F, Dadrass Javan F, Hosseinpour H. Fusion of UAV-based infrared and visible images for thermal leakage
                      map generation of building facades. Heliyon, 2023, 9(3): e14551. [doi: 10.1016/j.heliyon.2023.e14551]
                 [59]  Li  J,  Peng  YX,  Jiang  T.  Embedded  real-time  infrared  and  visible  image  fusion  for  UAV  surveillance.  Journal  of  Real-time  Image
                      Processing, 2021, 18(6): 2331–2345. [doi: 10.1007/s11554-021-01111-0]
                 [60]  Wang  CQ,  Luo  D,  Liu  Y,  Xu  B,  Zhou  YJ.  Near-surface  pedestrian  detection  method  based  on  deep  learning  for  UAVs  in  low
                      illumination environments. Optical Engineering, 2022, 61(2): 023103. [doi: 10.1117/1.OE.61.2.023103]
                 [61]  Che YP, Wang Q, Li SL, Li BG, Ma YT. Monitoring of maize phenotypic traits using super-resolution reconstruction and multimodal
                      data fusion. Trans. of the Chinese Society of Agricultural Engineering, 2021, 37(20): 169–178 (in Chinese with English abstract). [doi:
                      10.11975/j.issn.1002-6819.2021.20.019]
                 [62]  Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans. on Systems, Man, and Cybernetics,
                      1973, SMC-3(6): 610–621. [doi: 10.1109/TSMC.1973.4309314]
                 [63]  Nichol JE, Sarker MLR. Improved biomass estimation using the texture parameters of two high-resolution optical sensors. IEEE Trans.
                      on Geoscience and Remote Sensing, 2011, 49(3): 930–948. [doi: 10.1109/TGRS.2010.2068574]
                 [64]  Zhong H, Lin WS, Liu HR, Ma N, Liu KK, Cao RZ, Wang TT, Ren ZZ. Identification of tree species based on the fusion of UAV
                      hyperspectral image and LiDAR data in a coniferous and broad-leaved mixed forest in northeast China. Frontiers in Plant Science, 2022,
                      13: 964769. [doi: 10.3389/fpls.2022.964769]
                 [65]  Maimaitijiang M, Sagan V, Sidike P, Hartling S, Esposito F, Fritschi FB. Soybean yield prediction from UAV using multimodal data
                      fusion and deep learning. Remote Sensing of Environment, 2020, 237: 111599. [doi: 10.1016/j.rse.2019.111599]
                 [66]  Que YH, Wu S, Jiang ML, Zhang CC, Li FB, Li YM. Comparative study on soil moisture retrieval methods for summer maize using
                      multi-source remote sensing data fusion. Water Saving Irrigation, 2024(3): 91–98 (in Chinese with English abstract). [doi: 10.12396/jsgg.
                      2023372]
                 [67]  Fei SP, Hassan MA, Xiao YG, Su X, Chen Z, Cheng Q, Duan FY, Chen RQ, Ma YT. UAV-based multi-sensor data fusion and machine
                      learning algorithm for yield prediction in wheat. Precision Agriculture, 2023, 24(1): 187–212. [doi: 10.1007/s11119-022-09938-8]
                 [68]  Xu L, Zhou LF, Meng R, Zhao F, Lv ZG, Xu BY, Zeng LL, Yu X, Peng SB. An improved approach to estimate ratoon rice aboveground
                      biomass by integrating UAV-based spectral, textural and structural features. Precision Agriculture, 2022, 23(4): 1276–1301. [doi: 10.
                      1007/s11119-022-09884-5]
                 [69]  Zhu WX, Sun ZG, Huang YH, Yang T, Li J, Zhu KY, Zhang JQ, Yang B, Shao CX, Peng JB, Li SJ, Hu HL, Liao XH. Optimization of
                      multi-source  UAV  RS  agro-monitoring  schemes  designed  for  field-scale  crop  phenotyping.  Precision  Agriculture,  2021,  22(6):
                      1768–1802. [doi: 10.1007/s11119-021-09811-0]
                 [70]  Zhang XP, He ZZ, Ma Z, Jun P, Yang K. VIAE-net: An end-to-end altitude estimation through monocular vision and inertial feature
                      fusion neural networks for UAV autonomous landing. Sensors, 2021, 21(18): 6302. [doi: 10.3390/s21186302]
                 [71]  Li  MH,  Ma  WK,  Zhou  YM,  Ye  LJ.  UAV  life  search  method  based  on  multi-sensor  fusion.  Journal  of  Zhengzhou  University
                      (Engineering Science), 2023, 44(2): 61–67 (in Chinese with English abstract). [doi: 10.13705/j.issn.1671-6833.2023.02.003]
                 [72]  Su XY, Tao LF, Liu HM, Wang LZ, Suo ML. Real-time hierarchical risk assessment for UAVs based on recurrent fusion autoencoder
                      and dynamic FCE: A hybrid framework. Applied Soft Computing, 2021, 106: 107286. [doi: 10.1016/j.asoc.2021.107286]
   489   490   491   492   493   494   495   496   497   498   499