Page 494 - 《软件学报》2025年第4期
P. 494
1900 软件学报 2025 年第 36 卷第 4 期
[51] Qin T, Cao SZ, Pan J, Shen SJ. A general optimization-based framework for global pose estimation with multiple sensors.
arXiv:1901.03642, 2019.
[52] Zhang HJ, Ma JY, Liu HY, Guo P, Deng HC, Xu K, Ding XL. Indoor positioning technology of multi-rotor flying robot based on visual-
inertial fusion. Acta Aeronautica et Astronautica Sinica, 2023, 44(5): 426964 (in Chinese with English abstract). [doi: 10.7527/S1000-
6893.2022.26964]
[53] Lin HY, Zhan JR. GNSS-denied UAV indoor navigation with UWB incorporated visual inertial odometry. Measurement, 2023, 206:
112256. [doi: 10.1016/j.measurement.2022.112256]
[54] Henawy J, Li ZG, Yau WY, Seet G. Accurate IMU factor using switched linear systems for VIO. IEEE Trans. on Industrial Electronics,
2021, 68(8): 7199–7208. [doi: 10.1109/TIE.2020.3000097]
[55] Sankey JB, Sankey TT, Li J, Ravi S, Wang G, Caster J, Kasprak A. Quantifying plant-soil-nutrient dynamics in rangelands: Fusion of
UAV hyperspectral-LiDAR, UAV multispectral-photogrammetry, and ground-based LiDAR-digital photography in a shrub-encroached
desert grassland. Remote Sensing of Environment, 2021, 253: 112223. [doi: 10.1016/j.rse.2020.112223]
[56] Elamin A, El-Rabbany A. UAV-based multi-sensor data fusion for urban land cover mapping using a deep convolutional neural
network. Remote Sensing, 2022, 14(17): 4298. [doi: 10.3390/rs14174298]
[57] Gao S, Yuan XP, Gan S, Yang YF, Yuan XY. Experimental study on precise recognition of settlements in mountainous areas based on
UAV image and LiDAR point cloud. Journal of the Indian Society of Remote Sensing, 2022, 50(10): 1827–1840. [doi: 10.1007/s12524-
022-01548-1]
[58] Motayyeb S, Samadzedegan F, Dadrass Javan F, Hosseinpour H. Fusion of UAV-based infrared and visible images for thermal leakage
map generation of building facades. Heliyon, 2023, 9(3): e14551. [doi: 10.1016/j.heliyon.2023.e14551]
[59] Li J, Peng YX, Jiang T. Embedded real-time infrared and visible image fusion for UAV surveillance. Journal of Real-time Image
Processing, 2021, 18(6): 2331–2345. [doi: 10.1007/s11554-021-01111-0]
[60] Wang CQ, Luo D, Liu Y, Xu B, Zhou YJ. Near-surface pedestrian detection method based on deep learning for UAVs in low
illumination environments. Optical Engineering, 2022, 61(2): 023103. [doi: 10.1117/1.OE.61.2.023103]
[61] Che YP, Wang Q, Li SL, Li BG, Ma YT. Monitoring of maize phenotypic traits using super-resolution reconstruction and multimodal
data fusion. Trans. of the Chinese Society of Agricultural Engineering, 2021, 37(20): 169–178 (in Chinese with English abstract). [doi:
10.11975/j.issn.1002-6819.2021.20.019]
[62] Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans. on Systems, Man, and Cybernetics,
1973, SMC-3(6): 610–621. [doi: 10.1109/TSMC.1973.4309314]
[63] Nichol JE, Sarker MLR. Improved biomass estimation using the texture parameters of two high-resolution optical sensors. IEEE Trans.
on Geoscience and Remote Sensing, 2011, 49(3): 930–948. [doi: 10.1109/TGRS.2010.2068574]
[64] Zhong H, Lin WS, Liu HR, Ma N, Liu KK, Cao RZ, Wang TT, Ren ZZ. Identification of tree species based on the fusion of UAV
hyperspectral image and LiDAR data in a coniferous and broad-leaved mixed forest in northeast China. Frontiers in Plant Science, 2022,
13: 964769. [doi: 10.3389/fpls.2022.964769]
[65] Maimaitijiang M, Sagan V, Sidike P, Hartling S, Esposito F, Fritschi FB. Soybean yield prediction from UAV using multimodal data
fusion and deep learning. Remote Sensing of Environment, 2020, 237: 111599. [doi: 10.1016/j.rse.2019.111599]
[66] Que YH, Wu S, Jiang ML, Zhang CC, Li FB, Li YM. Comparative study on soil moisture retrieval methods for summer maize using
multi-source remote sensing data fusion. Water Saving Irrigation, 2024(3): 91–98 (in Chinese with English abstract). [doi: 10.12396/jsgg.
2023372]
[67] Fei SP, Hassan MA, Xiao YG, Su X, Chen Z, Cheng Q, Duan FY, Chen RQ, Ma YT. UAV-based multi-sensor data fusion and machine
learning algorithm for yield prediction in wheat. Precision Agriculture, 2023, 24(1): 187–212. [doi: 10.1007/s11119-022-09938-8]
[68] Xu L, Zhou LF, Meng R, Zhao F, Lv ZG, Xu BY, Zeng LL, Yu X, Peng SB. An improved approach to estimate ratoon rice aboveground
biomass by integrating UAV-based spectral, textural and structural features. Precision Agriculture, 2022, 23(4): 1276–1301. [doi: 10.
1007/s11119-022-09884-5]
[69] Zhu WX, Sun ZG, Huang YH, Yang T, Li J, Zhu KY, Zhang JQ, Yang B, Shao CX, Peng JB, Li SJ, Hu HL, Liao XH. Optimization of
multi-source UAV RS agro-monitoring schemes designed for field-scale crop phenotyping. Precision Agriculture, 2021, 22(6):
1768–1802. [doi: 10.1007/s11119-021-09811-0]
[70] Zhang XP, He ZZ, Ma Z, Jun P, Yang K. VIAE-net: An end-to-end altitude estimation through monocular vision and inertial feature
fusion neural networks for UAV autonomous landing. Sensors, 2021, 21(18): 6302. [doi: 10.3390/s21186302]
[71] Li MH, Ma WK, Zhou YM, Ye LJ. UAV life search method based on multi-sensor fusion. Journal of Zhengzhou University
(Engineering Science), 2023, 44(2): 61–67 (in Chinese with English abstract). [doi: 10.13705/j.issn.1671-6833.2023.02.003]
[72] Su XY, Tao LF, Liu HM, Wang LZ, Suo ML. Real-time hierarchical risk assessment for UAVs based on recurrent fusion autoencoder
and dynamic FCE: A hybrid framework. Applied Soft Computing, 2021, 106: 107286. [doi: 10.1016/j.asoc.2021.107286]