Page 495 - 《软件学报》2025年第4期
P. 495
李庚松 等: 无人机多传感器数据融合研究综述 1901
[73] Xia FL, Lou ZX, Sun D, Li HL, Quan LZ. Weed resistance assessment through airborne multimodal data fusion and deep learning: A
novel approach towards sustainable agriculture. Int’l Journal of Applied Earth Observation and Geoinformation, 2023, 120: 103352.
[doi: 10.1016/j.jag.2023.103352]
[74] Blom HAP, Bar-Shalom Y. The interacting multiple model algorithm for systems with Markovian switching coefficients. IEEE Trans.
on Automatic Control, 1988, 33(8): 780–783. [doi: 10.1109/9.1299]
[75] Carlson NA. Federated square root filter for decentralized parallel processors. IEEE Trans. on Aerospace and Electronic Systems, 1990,
26(3): 517–525. [doi: 10.1109/7.106130]
[76] Liu XH, Liu XX, Zhang WG, Yang Y. Interacting multiple model UAV navigation algorithm based on a robust cubature Kalman filter.
IEEE Access, 2020, 8: 81034–81044. [doi: 10.1109/ACCESS.2020.2991032]
[77] Youn W, Choi H, Cho A, Kim S, Rhudy MB. Accelerometer fault-tolerant model-aided state estimation for high-altitude long-endurance
UAV. IEEE Trans. on Instrumentation and Measurement, 2020, 69(10): 8539–8553. [doi: 10.1109/TIM.2020.2988748]
[78] Jiang N. Research on INS/GPS/DVL integrated navigation fault tolerance algorithm based on federal Kalman filter [MS. Thesis].
Harbin: Harbin Engineering University, 2020 (in Chinese with English abstract).
[79] Yang Y, Liu XX, Zhang WG, Liu XH, Guo YC. Multilayer low-cost sensor local-global filtering fusion integrated navigation of small
UAV. IEEE Sensors Journal, 2022, 22(18): 17550–17564. [doi: 10.1109/JSEN.2021.3091687]
[80] Dai J, Hao XY, Liu SL, Ren ZB. Research on UAV robust adaptive positioning algorithm based on IMU/GNSS/VO in complex scenes.
Sensors, 2022, 22(8): 2832. [doi: 10.3390/s22082832]
[81] Bultmann S, Quenzel J, Behnke S. Real-time multi-modal semantic fusion on unmanned aerial vehicles. In: Proc. of the 2021 European
Conf. on Mobile Robots (ECMR). Bonn: IEEE, 2021. 1–8. [doi: 10.1109/ECMR50962.2021.9568812]
[82] Bultmann S, Quenzel J, Behnke S. Real-time multi-modal semantic fusion on unmanned aerial vehicles with label propagation for cross-
domain adaptation. Robotics and Autonomous Systems, 2023, 159: 104286. [doi: 10.1016/j.robot.2022.104286]
[83] Deng HL, Lu Y, Yang T, Liu ZY, Chen JC. Unmanned aerial vehicles anomaly detection model based on sensor information fusion and
hybrid multimodal neural network. Engineering Applications of Artificial Intelligence, 2024, 132: 107961. [doi: 10.1016/j.engappai.
2024.107961]
[84] Kerkech M, Hafiane A, Canals R. Vine disease detection in UAV multispectral images using optimized image registration and deep
learning segmentation approach. Computers and Electronics in Agriculture, 2020, 174: 105446. [doi: 10.1016/j.compag.2020.105446]
[85] Ochoa-de-Eribe-Landaberea A, Zamora-Cadenas L, Peñagaricano-Muñoa O, Velez I. UWB and IMU-based UAV’s assistance system
for autonomous landing on a platform. Sensors, 2022, 22(6): 2347. [doi: 10.3390/s22062347]
[86] 2022, 193: 110893. [doi: 10.1016/j.measurement.2022.110893]
Donati C, Mammarella M, Comba L, Biglia A, Gay P, Dabbene F. 3D distance filter for the autonomous navigation of UAVs in
agricultural scenarios. Remote Sensing, 2022, 14(6): 1374. [doi: 10.3390/rs14061374]
[87] Yang Y, Liu XX, Liu XH, Guo YC, Zhang WG. Model-free integrated navigation of small fixed-wing UAVs full state estimation in
wind disturbance. IEEE Sensors Journal, 2022, 22(3): 2771–2781. [doi: 10.1109/JSEN.2021.3139842]
[88] Negru SA, Geragersian P, Petrunin I, Guo WS. Resilient multi-sensor UAV navigation with a hybrid federated fusion architecture.
Sensors, 2024, 24(3): 981. [doi: 10.3390/s24030981]
[89] You WD, Li FB, Liao LQ, Huang ML. Data fusion of UWB and IMU based on unscented Kalman filter for indoor localization of
quadrotor UAV. IEEE Access, 2020, 8: 64971–64981. [doi: 10.1109/ACCESS.2020.2985053]
[90] Dai J, Liu SL, Hao XY, Ren ZB, Yang X. UAV localization algorithm based on factor graph optimization in complex scenes. Sensors,
2022, 22(15): 5862. [doi: 10.3390/s22155862]
[91] Sun KC, Zeng QH, Liu JY, Qiu WQ, Shi JH. Modified attitude factor graph fusion method for unmanned helicopter under atmospheric
disturbance. Chinese Journal of Aeronautics, 2022, 35(6): 285–297. [doi: 10.1016/j.cja.2021.07.020]
[92] Liu XH, Liu XX, Yang Y, Guo YC, Zhang WG. Robust variational Bayesian method-based SINS/GPS integrated system. Measurement,
[93] Wang ZY, Li N, Wang Z, Zhu FC, Du X. An adaptive federated filter based on variational Bayes with application to multisource
navigation. IEEE Sensors Journal, 2023, 23(9): 9859–9870. [doi: 10.1109/JSEN.2023.3258932]
[94] Moon S, Youn W, Bang H. Novel deep-learning-aided multimodal target tracking. IEEE Sensors Journal, 2021, 21(18): 20730–20739.
[doi: 10.1109/JSEN.2021.3100588]
[95] Ye XY, Zeng YF, Zeng QH, Zou YJ. Airspeed-aided state estimation algorithm of small fixed-wing UAVs in GNSS-denied
environments. Sensors, 2022, 22(9): 3156. [doi: 10.3390/s22093156]
[96] Cheng Q, Li YH, Lu HD. UAV-aided localization based on extended Kalman filtering. Electronics Optics & Control, 2023, 30(12):
93–97, 103 (in Chinese with English abstract). [doi: 10.3969/j.issn.1671-637X.2023.12.015]
[97] Bassolillo SR, D’Amato E, Notaro I, Ariante G, del Core G, Mattei M. Enhanced attitude and altitude estimation for indoor autonomous
UAVs. Drones, 2022, 6(1): 18. [doi: 10.3390/drones6010018]