Page 497 - 《软件学报》2025年第4期
P. 497
李庚松 等: 无人机多传感器数据融合研究综述 1903
forests based on deep learning combined with UAV LiDAR data and RGB images. Forests, 2024, 15(2): 293. [doi: 10.3390/f15020293]
[120] Lary DJ, Schaefer D, Waczak J, Aker A, Barbosa A, Wijeratne LOH, Talebi S, Fernando B, Sadler J, Lary T, Lary MD. Autonomous
learning of new environments with a robotic team employing hyper-spectral remote sensing, comprehensive in-situ sensing and machine
learning. Sensors, 2021, 21(6): 2240. [doi: 10.3390/s21062240]
[121] Lewicka O, Specht M, Stateczny A, Specht C, Dardanelli G, Brčić D, Szostak B, Halicki A, Stateczny M, Widźgowski S. Integration
data model of the bathymetric monitoring system for shallow waterbodies using UAV and USV platforms. Remote Sensing, 2022,
14(16): 4075. [doi: 10.3390/rs14164075]
[122] Alevizos E, Oikonomou D, Argyriou AV, Alexakis DD. Fusion of drone-based RGB and multi-spectral imagery for shallow water
bathymetry inversion. Remote Sensing, 2022, 14(5): 1127. [doi: 10.3390/rs14051127]
[123] Feng YR, Tse K, Chen SY, Wen CY, Li BY. Learning-based autonomous UAV system for electrical and mechanical (E&M) device
inspection. Sensors, 2021, 21(4): 1385. [doi: 10.3390/s21041385]
[124] Vitiello F, Causa F, Opromolla R, Fasano G. Radar/visual fusion with fuse-before-track strategy for low altitude non-cooperative sense
and avoid. Aerospace Science and Technology, 2024, 146: 108946. [doi: 10.1016/j.ast.2024.108946]
[125] Marques T, Carreira S, Miragaia R, Ramos J, Pereira A. Applying deep learning to real-time UAV-based forest monitoring: Leveraging
multi-sensor imagery for improved results. Expert Systems with Applications, 2024, 245: 123107. [doi: 10.1016/j.eswa.2023.123107]
[126] Nagarani N, Venkatakrishnan P, Balaji N. Unmanned aerial vehicle’s runway landing system with efficient target detection by using
morphological fusion for military surveillance system. Computer Communications, 2020, 151: 463–472. [doi: 10.1016/j.comcom.2019.
12.039]
[127] Golcarenarenji G, Martinez-Alpiste I, Wang Q, Alcaraz-Calero JM. Illumination-aware image fusion for around-the-clock human
detection in adverse environments from unmanned aerial vehicle. Expert Systems with Applications, 2022, 204: 117413. [doi: 10.1016/j.
eswa.2022.117413]
[128] Liu F, Shan JY, Xiong BY, Fang Z. A real-time and multi-sensor-based landing area recognition system for UAVs. Drones, 2022, 6(5):
118. [doi: 10.3390/drones6050118]
[129] Ahmed S, Qiu BJ, Kong CW, Xin H, Ahmad F, Lin JL. A data-driven dynamic obstacle avoidance method for liquid-carrying plant
protection UAVs. Agronomy, 2022, 12(4): 873. [doi: 10.3390/agronomy12040873]
[130] Green A, Kleine K, Acevedo I, Kraus D, Farrar CR, Mascarenas DDL. A multi-modal, silicon retina technique for detecting the presence
of reflective and transparent barriers. IEEE Sensors Journal, 2021, 21(10): 11401–11416. [doi: 10.1109/JSEN.2020.3004121]
[131] Hamadi H, Lussier B, Fantoni I, Francis C. Data fusion fault tolerant strategy for a quadrotor UAV under sensors and software faults.
ISA Trans., 2022, 129: 520–539. [doi: 10.1016/j.isatra.2022.01.007]
[132] Chang YX, Cheng YQ, Manzoor U, Murray J. A review of UAV autonomous navigation in GPS-denied environments. Robotics and
Autonomous Systems, 2023, 170: 104533. [doi: 10.1016/j.robot.2023.104533]
Maddikunta PKR, Hakak S, Alazab M, Bhattacharya S, Gadekallu TR, Khan WZ, Pham QV. Unmanned aerial vehicles in smart
[133] discussion. Drones, 2023, 7(4): 261. [doi: 10.3390/drones7040261]
agriculture: Applications, requirements, and challenges. IEEE Sensors Journal, 2021, 21(16): 17608–17619. [doi: 10.1109/JSEN.2021.
3049471]
[134] Alhafnawi M, Bany Salameh HA, Masadeh A, Al-Obiedollah H, Ayyash M, El-Khazali R, Elgala H. A survey of indoor and outdoor
UAV-based target tracking systems: Current status, challenges, technologies, and future directions. IEEE Access, 2023, 11:
68324–68339. [doi: 10.1109/ACCESS.2023.3292302]
[135] He YX, Guo HW, Li XD, Lu ZH, Li XY. A collaborative relay tracking method based on information fusion for UAVs. IEEE Trans. on
Aerospace and Electronic Systems, 2023, 59(5): 6894–6906. [doi: 10.1109/TAES.2023.3282190]
[136] Morales JJ, Khalife JJ, Kassas ZM. Information fusion strategies for collaborative inertial radio SLAM. IEEE Trans. on Intelligent
Transportation Systems, 2022, 23(8): 12935–12952. [doi: 10.1109/TITS.2021.3118678]
[137] Saini N, Bonetto E, Price E, Ahmad A, Black MJ. AirPose: Multi-view fusion network for aerial 3D human pose and shape estimation.
IEEE Robotics and Automation Letters, 2022, 7(2): 4805–4812. [doi: 10.1109/LRA.2022.3145494]
[138] Shi DX, Yang ZY, Jin SC, Zhang YJ, Su XD, Li RH. A multi-UAV collaborative SLAM method oriented to data sharing. Chinese
Journal of Computers, 2021, 44(5): 983–998 (in Chinese with English abstract). [doi: 10.11897/SP.J.1016.2021.00983]
[139] Tong PF, Yang XR, Yang YJ, Liu W, Wu PY. Multi-UAV collaborative absolute vision positioning and navigation: A survey and
[140] Barrile V, Simonetti S, Citroni R, Fotia A, Bilotta G. Experimenting agriculture 4.0 with sensors: A data fusion approach between
remote sensing, UAVs and self-driving tractors. Sensors, 2022, 22(20): 7910. [doi: 10.3390/s22207910]
[141] Qi GH, Chang CY, Yang W, Gao P, Zhao GX. Soil salinity inversion in coastal corn planting areas by the satellite-UAV-ground
integration approach. Remote Sensing, 2021, 13(16): 3100. [doi: 10.3390/rs13163100]
[142] Zhang H, Li QM, Wang JC, Fu BT, Duan ZJ, Zhao ZY. Application of space-sky-earth integration technology with UAVs in risk