Page 497 - 《软件学报》2025年第4期
P. 497

李庚松 等: 无人机多传感器数据融合研究综述                                                          1903


                      forests based on deep learning combined with UAV LiDAR data and RGB images. Forests, 2024, 15(2): 293. [doi: 10.3390/f15020293]
                 [120]  Lary DJ, Schaefer D, Waczak J, Aker A, Barbosa A, Wijeratne LOH, Talebi S, Fernando B, Sadler J, Lary T, Lary MD. Autonomous
                      learning of new environments with a robotic team employing hyper-spectral remote sensing, comprehensive in-situ sensing and machine
                      learning. Sensors, 2021, 21(6): 2240. [doi: 10.3390/s21062240]
                 [121]  Lewicka O, Specht M, Stateczny A, Specht C, Dardanelli G, Brčić D, Szostak B, Halicki A, Stateczny M, Widźgowski S. Integration
                      data  model  of  the  bathymetric  monitoring  system  for  shallow  waterbodies  using  UAV  and  USV  platforms.  Remote  Sensing,  2022,
                      14(16): 4075. [doi: 10.3390/rs14164075]
                 [122]  Alevizos  E,  Oikonomou  D,  Argyriou  AV,  Alexakis  DD.  Fusion  of  drone-based  RGB  and  multi-spectral  imagery  for  shallow  water
                      bathymetry inversion. Remote Sensing, 2022, 14(5): 1127. [doi: 10.3390/rs14051127]
                 [123]  Feng YR, Tse K, Chen SY, Wen CY, Li BY. Learning-based autonomous UAV system for electrical and mechanical (E&M) device
                      inspection. Sensors, 2021, 21(4): 1385. [doi: 10.3390/s21041385]
                 [124]  Vitiello F, Causa F, Opromolla R, Fasano G. Radar/visual fusion with fuse-before-track strategy for low altitude non-cooperative sense
                      and avoid. Aerospace Science and Technology, 2024, 146: 108946. [doi: 10.1016/j.ast.2024.108946]
                 [125]  Marques T, Carreira S, Miragaia R, Ramos J, Pereira A. Applying deep learning to real-time UAV-based forest monitoring: Leveraging
                      multi-sensor imagery for improved results. Expert Systems with Applications, 2024, 245: 123107. [doi: 10.1016/j.eswa.2023.123107]
                 [126]  Nagarani N, Venkatakrishnan P, Balaji N. Unmanned aerial vehicle’s runway landing system with efficient target detection by using
                      morphological fusion for military surveillance system. Computer Communications, 2020, 151: 463–472. [doi: 10.1016/j.comcom.2019.
                      12.039]
                 [127]  Golcarenarenji  G,  Martinez-Alpiste  I,  Wang  Q,  Alcaraz-Calero  JM.  Illumination-aware  image  fusion  for  around-the-clock  human
                      detection in adverse environments from unmanned aerial vehicle. Expert Systems with Applications, 2022, 204: 117413. [doi: 10.1016/j.
                      eswa.2022.117413]
                 [128]  Liu F, Shan JY, Xiong BY, Fang Z. A real-time and multi-sensor-based landing area recognition system for UAVs. Drones, 2022, 6(5):
                      118. [doi: 10.3390/drones6050118]
                 [129]  Ahmed S, Qiu BJ, Kong CW, Xin H, Ahmad F, Lin JL. A data-driven dynamic obstacle avoidance method for liquid-carrying plant
                      protection UAVs. Agronomy, 2022, 12(4): 873. [doi: 10.3390/agronomy12040873]
                 [130]  Green A, Kleine K, Acevedo I, Kraus D, Farrar CR, Mascarenas DDL. A multi-modal, silicon retina technique for detecting the presence
                      of reflective and transparent barriers. IEEE Sensors Journal, 2021, 21(10): 11401–11416. [doi: 10.1109/JSEN.2020.3004121]
                 [131]  Hamadi H, Lussier B, Fantoni I, Francis C. Data fusion fault tolerant strategy for a quadrotor UAV under sensors and software faults.
                      ISA Trans., 2022, 129: 520–539. [doi: 10.1016/j.isatra.2022.01.007]
                 [132]  Chang YX, Cheng YQ, Manzoor U, Murray J. A review of UAV autonomous navigation in GPS-denied environments. Robotics and
                      Autonomous Systems, 2023, 170: 104533. [doi: 10.1016/j.robot.2023.104533]
                      Maddikunta  PKR,  Hakak  S,  Alazab  M,  Bhattacharya  S,  Gadekallu  TR,  Khan  WZ,  Pham  QV.  Unmanned  aerial  vehicles  in  smart
                 [133] discussion. Drones, 2023, 7(4): 261. [doi: 10.3390/drones7040261]
                      agriculture: Applications, requirements, and challenges. IEEE Sensors Journal, 2021, 21(16): 17608–17619. [doi: 10.1109/JSEN.2021.
                      3049471]
                 [134]  Alhafnawi M, Bany Salameh HA, Masadeh A, Al-Obiedollah H, Ayyash M, El-Khazali R, Elgala H. A survey of indoor and outdoor
                      UAV-based  target  tracking  systems:  Current  status,  challenges,  technologies,  and  future  directions.  IEEE  Access,  2023,  11:
                      68324–68339. [doi: 10.1109/ACCESS.2023.3292302]
                 [135]  He YX, Guo HW, Li XD, Lu ZH, Li XY. A collaborative relay tracking method based on information fusion for UAVs. IEEE Trans. on
                      Aerospace and Electronic Systems, 2023, 59(5): 6894–6906. [doi: 10.1109/TAES.2023.3282190]
                 [136]  Morales  JJ,  Khalife  JJ,  Kassas  ZM.  Information  fusion  strategies  for  collaborative  inertial  radio  SLAM.  IEEE  Trans.  on  Intelligent
                      Transportation Systems, 2022, 23(8): 12935–12952. [doi: 10.1109/TITS.2021.3118678]
                 [137]  Saini N, Bonetto E, Price E, Ahmad A, Black MJ. AirPose: Multi-view fusion network for aerial 3D human pose and shape estimation.
                      IEEE Robotics and Automation Letters, 2022, 7(2): 4805–4812. [doi: 10.1109/LRA.2022.3145494]
                 [138]  Shi DX, Yang ZY, Jin SC, Zhang YJ, Su XD, Li RH. A multi-UAV collaborative SLAM method oriented to data sharing. Chinese
                      Journal of Computers, 2021, 44(5): 983–998 (in Chinese with English abstract). [doi: 10.11897/SP.J.1016.2021.00983]
                 [139]  Tong PF, Yang XR, Yang YJ, Liu W, Wu PY. Multi-UAV collaborative absolute vision positioning and navigation: A survey and

                 [140]  Barrile V, Simonetti S, Citroni R, Fotia A, Bilotta G. Experimenting agriculture 4.0 with sensors: A data fusion approach between
                      remote sensing, UAVs and self-driving tractors. Sensors, 2022, 22(20): 7910. [doi: 10.3390/s22207910]
                 [141]  Qi  GH,  Chang  CY,  Yang  W,  Gao  P,  Zhao  GX.  Soil  salinity  inversion  in  coastal  corn  planting  areas  by  the  satellite-UAV-ground
                      integration approach. Remote Sensing, 2021, 13(16): 3100. [doi: 10.3390/rs13163100]
                 [142]  Zhang  H,  Li  QM,  Wang  JC,  Fu  BT,  Duan  ZJ,  Zhao  ZY.  Application  of  space-sky-earth  integration  technology  with  UAVs  in  risk
   492   493   494   495   496   497   498   499   500   501