Page 492 - 《软件学报》2025年第4期
P. 492
1898 软件学报 2025 年第 36 卷第 4 期
References:
[1] He DJ, Du X, Qiao YR, Zhu YK, Fan Q, Luo W. A survey on cyber security of unmanned aerial vehicles. Chinese Journal of
Computers, 2019, 42(5): 1076–1094 (in Chinese with English abstract). [doi: 10.11897/SP.J.1016.2019.01076]
[2] Zhu CL, Jin Y, Wang JX, Yuan C. Overview of the development of foreign military UAV systems and technology in 2022. Tactical
Missile Technology, 2023(3): 11–25, 31 (in Chinese with English abstract). [doi: 10.16358/j.issn.1009-1300.20230096]
[3] Saha D, Pattanayak D, Mandal PS. Surveillance of uneven surface with self-organizing unmanned aerial vehicles. IEEE Trans. on
Mobile Computing, 2022, 21(4): 1449–1462. [doi: 10.1109/TMC.2020.3022075]
[4] Li YJ, Qiao G, Popov S, Cui XB, Florinsky IV, Yuan XH, Wang LJ. Unmanned aerial vehicle remote sensing for antarctic research: A
review of progress, current applications, and future use cases. IEEE Geoscience and Remote Sensing Magazine, 2023, 11(1): 73–93.
[doi: 10.1109/MGRS.2022.3227056]
[5] Li HZ, Chen YL, Liu J, Zhang Z, Zhu H. Unmanned aircraft system applications in damage detection and service life prediction for
bridges: A review. Remote Sensing, 2022, 14(17): 4210. [doi: 10.3390/rs14174210]
[6] Bijjahalli S, Sabatini R, Gardi A. Advances in intelligent and autonomous navigation systems for small UAS. Progress in Aerospace
Sciences, 2020, 115: 100617. [doi: 10.1016/j.paerosci.2020.100617]
[7] Khan MA, El Sayed H, Malik S, Zia T, Khan J, Alkaabi N, Ignatious H. Level-5 autonomous driving—Are we there yet? A review of
research literature. ACM Computing Surveys, 2023, 55(2): 27. [doi: 10.1145/3485767]
[8] Gandhi A, Adhvaryu K, Poria S, Cambria E, Hussain A. Multimodal sentiment analysis: A systematic review of history, datasets,
multimodal fusion methods, applications, challenges and future directions. Information Fusion, 2023, 91: 424–444. [doi: 10.1016/j.inffus.
2022.09.025]
[9] Qin Z, Zhao PB, Zhuang TM, Deng FH, Ding Y, Chen DJ. A survey of identity recognition via data fusion and feature learning.
Information Fusion, 2023, 91: 694–712. [doi: 10.1016/j.inffus.2022.10.032]
[10] Liu YB, Fan LX, Zhang CQ, Zhou T, Xiao ZT, Geng L, Shen DG. Incomplete multi-modal representation learning for Alzheimer’s
disease diagnosis. Medical Image Analysis, 2021, 69: 101953. [doi: 10.1016/j.media.2020.101953]
[11] Lu YJ, Liu S. Research on UAV navigation technology based on vision. Process Automation Instrumentation, 2021, 42(4): 1–7 (in
Chinese with English abstract). [doi: 10.16086/j.cnki.issn1000-0380.2020070020]
[12] Dissanayaka D, Wanasinghe TR, de Silva O, Jayasiri A, Mann GKI. Review of navigation methods for UAV-based parcel delivery.
IEEE Trans. on Automation Science and Engineering, 2024, 21(1): 1068–1082. [doi: 10.1109/TASE.2022.3232025]
[13] Ye XY, Song FJ, Zhang ZY, Zeng QH. A review of small UAV navigation system based on multisource sensor fusion. IEEE Sensors
Journal, 2023, 23(17): 18926–18948. [doi: 10.1109/JSEN.2023.3292427]
[14] Chen WS, Huang YF, Lu XF. Survey on application of multi-sensor fusion in UAV detection technology. Modern Radar, 2020, 42(6):
15–29 (in Chinese with English abstract). [doi: 10.16592/j.cnki.1004-7859.2020.06.003]
[15] Yao H, Qin RJ, Chen XY. Unmanned aerial vehicle for remote sensing applications—A review. Remote Sensing, 2019, 11(12): 1443.
[doi: 10.3390/rs11121443]
[16] Jurado JM, López A, Pádua L, Sousa JJ. Remote sensing image fusion on 3D scenarios: A review of applications for agriculture and
forestry. Int’l Journal of Applied Earth Observation and Geoinformation, 2022, 112: 102856. [doi: 10.1016/j.jag.2022.102856]
[17] Li XL. Endurance of unmanned aerial vehicles. Scientia Sinica Informationis, 2023, 53(7): 1233–1261 (in Chinese with English
abstract). [doi: 10.1360/SSI-2023-0130]
[18] Song CH. The civil UAV aapplication progress. Mechanical & Electrical Engineering Technology, 2018, 47(11): 149–152 (in Chinese
with English abstract). [doi: 10.3969/j.issn.1009-9492.2018.11.043]
[19] Components-DJI. DJI Official. 2024. https://www.dji.com/products/components
[20] Guo K, Liu LS, Shi SH, Liu DT, Peng XY. UAV sensor fault detection using a classifier without negative samples: A local density
regulated optimization algorithm. Sensors, 2019, 19(4): 771. [doi: 10.3390/s19040771]
[21] Ye X, Xie SJ, Cui HH, Sheng CY, Han JT, Zhou SJ, Shen SC, Chen ZE, Li SL. Autonomous obstacle avoidance system for unmanned
aerial vehicles based on depth camera. Video Engineering, 2023, 47(5): 58–63 (in Chinese with English abstract). [doi: 10.16280/j.
videoe.2023.05.014]
[22] Xiang XJ, Tan Q, Wang C, Zhou H, Tang DQ, Niu YF. Survey on key technologies of UAV advanced ground stations. Journal of
National University of Defense Technology, 2023, 45(2): 1–14 (in Chinese with English abstract). [doi: 10.11887/j.cn.202302001]
[23] Huang X, Dong XY, Ma J, Liu K, Ahmed S, Lin JL, Qiu BJ. The improved A* obstacle avoidance algorithm for the plant protection
UAV with millimeter wave radar and monocular camera data fusion. Remote Sensing, 2021, 13(17): 3364. [doi: 10.3390/rs13173364]
[24] Wang JY, Zhang H, Song C, Yi H. Overview of the development of multi-source information fusion technology for UAV. Tactical
Missile Technology, 2019(2): 106–112 (in Chinese with English abstract). [doi: 10.16358/j.issn.1009-1300.2019.8.148]
[25] Meng T, Jing XY, Yan Z, Pedrycz W. A survey on machine learning for data fusion. Information Fusion, 2020, 57: 115–129. [doi: 10.