Page 345 - 《软件学报》2024年第6期
P. 345

龙茂森 等: 特征扩展的随机向量函数链神经网络                                                         2921


                 来降低深层结构      (如  BL-DFIS) 中输入变量含义不明确的模糊规则数. 原始数据有明确语义, 其蕴含的信息仍然具
                 有一定的利用价值. 当模糊神经网络向着复杂化和深层化发展时, 浅层的简单结构带来的性能支撑作用仍然值得
                 关注. 对于今后的工作, 我们考虑对当前           FA-RVFLNN  的增强节点做两点改进, 其一是随机选择少量属性作为模糊
                 规则的输入, 进而缩短规则的长度; 其二是将高斯模糊函数嵌入增强节点, 实现系统规则的统一性.

                 References:
                  [1]  Pao YH, Takefuji Y. Functional-link net computing: Theory, system architecture, and functionalities. Computer, 1992, 25(5): 76–79. [doi:
                     10.1109/2.144401]
                  [2]  Pao YH, Park GH, Sobajic DJ. Learning and generalization characteristics of the random vector functional-link net. Neurocomputing,
                     1994, 6(2): 163–180. [doi: 10.1016/0925-2312(94)90053-1]
                  [3]  Chen CLP, Wan JZ. A rapid learning and dynamic stepwise updating algorithm for flat neural networks and the application to time-series
                     prediction. IEEE Trans. on Systems, Man, and Cybernetics, Part B (Cybernetics), 1999, 29(1): 62–72. [doi: 10.1109/3477.740166]
                  [4]  Malik AK, Gao RB, Ganaie MA, Tanveer M, Suganthan PN. Random vector functional link network: Recent developments, applications,
                     and future directions. arXiv:2203.11316, 2022.
                  [5]  Katuwal R, Suganthan PN. Stacked autoencoder based deep random vector functional link neural network for classification. Applied Soft
                     Cybernetics, 2020, 50(2): 414–424. [doi: 10.1109/TCYB.2018.2857815]
                     Computing, 2019, 85: 105854. [doi: 10.1016/j.asoc.2019.105854]
                  [6]  Henríquez PA, Ruz GA. Twitter sentiment classification based on deep random vector functional link. In: Proc. of the 2018 Int’l Joint
                     Conf. on Neural Networks. Rio de Janeiro: IEEE, 2018. 1–6. [doi: 10.1109/IJCNN.2018.8489703]
                  [7]  Zhang L, Suganthan PN. Visual tracking with convolutional random vector functional link network. IEEE Trans. on Cybernetics, 2017,
                     47(10): 3243–3253. [doi: 10.1109/TCYB.2016.2588526]
                  [8]  Shi QS, Katuwal R, Suganthan PN, Tanveer M. Random vector functional link neural network based ensemble deep learning. Pattern
                     Recognition, 2021, 117: 107978. [doi: 10.1016/j.patcog.2021.107978]
                  [9]  Chen CLP, Liu ZL. Broad learning system: An effective and efficient incremental learning system without the need for deep architecture.
                     IEEE Trans. on Neural Networks and Learning Systems, 2018, 29(1): 10–24. [doi: 10.1109/TNNLS.2017.2716952]
                 [10]  Zhou T, Chung FL, Wang ST. Deep TSK fuzzy classifier with stacked generalization and triplely concise interpretability guarantee for
                     large data. IEEE Trans. on Fuzzy Systems, 2017, 25(5): 1207–1221. [doi: 10.1109/TFUZZ.2016.2604003]
                 [11]  Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. on Systems, Man, and
                     Cybernetics, 1985, SMC-15(1): 116–132. [doi: 10.1109/TSMC.1985.6313399]
                 [12]  Mamdani EH, Assilian S. An experiment in linguistic synthesis with a fuzzy logic controller. Int’l Journal of Man-machine Studies, 1975,
                     7(1): 1–13. [doi: 10.1016/S0020-7373(75)80002-2]
                 [13]  Jang  JSR.  ANFIS:  Adaptive-network-based  fuzzy  inference  system.  IEEE  Trans.  on  Systems,  Man,  and  Cybernetics,  1993,  23(3):
                     665–685. [doi: 10.1109/21.256541]
                 [14]  Farag WA, Quintana VH, Lambert-Torres G. A genetic-based neuro-fuzzy approach for modeling and control of dynamical systems.
                     IEEE Trans. on Neural Networks, 1998, 9(5): 756–767. [doi: 10.1109/72.712150]
                 [15]  Miranian  A,  Abdollahzade  M.  Developing  a  local  least-squares  support  vector  machines-based  neuro-fuzzy  model  for  nonlinear  and
                     chaotic time series prediction. IEEE Trans. on Neural Networks and Learning Systems, 2013, 24(2): 207–218. [doi: 10.1109/TNNLS.
                     2012.2227148]
                 [16]  Feng S, Chen CLP. A fuzzy restricted Boltzmann machine: Novel learning algorithms based on the crisp possibilistic mean value of fuzzy
                     numbers. IEEE Trans. on Fuzzy Systems, 2018, 26(1): 117–130. [doi: 10.1109/TFUZZ.2016.2639064]
                 [17]  Feng  S,  Chen  CLP.  Fuzzy  broad  learning  system:  A  novel  neuro-fuzzy  model  for  regression  and  classification.  IEEE  Trans.  on

                 [18]  Feng S, Chen CLP, Xu LL, Liu ZL. On the accuracy-complexity tradeoff of fuzzy broad learning system. IEEE Trans. on Fuzzy Systems,
                     2021, 29(10): 2963–2974. [doi: 10.1109/TFUZZ.2020.3009757]
                 [19]  Bai KY, Zhu XM, Wen SP, Zhang RT, Zhang WY. Broad learning based dynamic fuzzy inference system with adaptive structure and
                     interpretable fuzzy rules. IEEE Trans. on Fuzzy Systems, 2022, 30(8): 3270–3283. [doi: 10.1109/TFUZZ.2021.3112222]
                 [20]  Kasun LLC, Zhou HM, Huang GB, Vong CM. Representational learning with extreme learning machine for big data. IEEE Intelligent
                     Systems, 2013, 28(6): 31–34.
                 [21]  Zhang L, Suganthan PN. A comprehensive evaluation of random vector functional link networks. Information Sciences, 2016, 367–368:
                     1094–1105. [doi: 10.1016/j.ins.2015.09.025]
   340   341   342   343   344   345   346   347   348   349   350