Page 346 - 《软件学报》2024年第6期
P. 346

2922                                                       软件学报  2024  年第  35  卷第  6  期


                 [22]  Vuković  N,  Petrović  M,  Miljković  Z.  A  comprehensive  experimental  evaluation  of  orthogonal  polynomial  expanded  random  vector
                     functional link neural networks for regression. Applied Soft Computing, 2018, 70: 1083–1096. [doi: 10.1016/j.asoc.2017.10.010]
                 [23]  Ren  Y,  Suganthan  PN,  Srikanth  N,  Amaratunga  G.  Random  vector  functional  link  network  for  short-term  electricity  load  demand
                     forecasting. Information Sciences, 2016, 367–368: 1078–1093. [doi: 10.1016/j.ins.2015.11.039]
                 [24]  Igelnik B, Pao YH. Stochastic choice of basis functions in adaptive function approximation and the functional-link net. IEEE Trans. on
                     Neural Networks, 1995, 6(6): 1320–1329. [doi: 10.1109/72.471375]
                 [25]  Buckley JJ, Hayashi Y, Czogała E. On the equivalence of neural nets and fuzzy expert systems. Fuzzy Sets and Systems, 1993, 53(2):
                     129–134. [doi: 10.1016/0165-0114(93)90167-G]
                 [26]  Jang JSR, Sun CT. Functional equivalence between radial basis function networks and fuzzy inference systems. IEEE Trans. on Neural
                     Networks, 1993, 4(1): 156–159. [doi: 10.1109/72.182710]
                 [27]  Benítez JM, Castro JL, Requena I. Are artificial neural networks black boxes? IEEE Trans. on Neural Networks, 1997, 8(5): 1156–1164.
                     [doi: 10.1109/72.623216]
                 [28]  Zhang D, Bai XL, Cai KY. Extended neuro-fuzzy models of multilayer perceptrons. Fuzzy Sets and Systems, 2004, 142(2): 221–242.
                     [doi: 10.1016/S0165-0114(03)00244-6]
                 [29]  Chung FL, Wang ST, Deng ZH, Hu DW. CATSMLP: Toward a robust and interpretable multilayer perceptron with Sigmoid activation
                             龙茂森(2000-), 男, 博士生, 主要研究领域为人
                     functions. IEEE Trans. on Systems, Man, and Cybernetics, Part B (Cybernetics), 2006, 36(6): 1319–1331. [doi: 10.1109/TSMCB.2006.
                     875871]
                 [30]  Magdalena L. Fuzzy rule-based systems. In: Kacprzyk J, Pedrycz W, eds. Springer Handbook of Computational Intelligence. Berlin,
                     Heidelberg: Springer, 2015. 203–218. [doi: 10.1007/978-3-662-43505-2_13]
                 [31]  Zhou  T,  Deng  ZH,  Jiang  YZ,  Wang  ST.  Multi-module  TSK  fuzzy  system  based  on  training  space  reconstruction.  Ruan  Jian  Xue
                     Bao/Journal of Software, 2020, 31(11): 3506−3518 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5846.htm [doi:
                     10.13328/j.cnki.jos.005846]
                 [32]  Zhou T, Deng ZH, Jiang YZ, Wang ST. Fuzzy classification method for small-and medium-scale datasets. Ruan Jian Xue Bao/Journal of
                     Software, 2019, 30(12): 3637−3650 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5590.htm [doi: 10.13328/j.cnki.
                     jos.005590]
                 [33]  Blake C. UCI repository of machine learning databases. 1998. https://archive.ics.uci.edu/ml/datasets.php
                 [34]  Alcalá-Fdez J, Fernández A, Luengo J, Derrac J, García S, Sánchez L, Herrera F. Keel data-mining software tool: Data set repository,
                     integration  of  algorithms  and  experimental  analysis  framework.  Journal  of  Multiple-valued  Logic  &  Soft  Computing,  2010,  17(2):
                     255–287.
                 [35]  Hoerl AE, Kennard RW. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 1970, 12(1): 55–67. [doi: 10.
                     1080/00401706.1970.10488634]
                 [36]  Demšar J. Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research, 2006, 7: 1–30.

                 附中文参考文献:
                 [31]  周塔, 邓赵红, 蒋亦樟, 王士同. 基于训练空间重构的多模块TSK模糊系统. 软件学报, 2020, 31(11): 3506−3518. http://www.jos.org.
                     cn/1000-9825/5846.htm [doi: 10.13328/j.cnki.jos.005846]
                 [32]  周塔, 邓赵红, 蒋亦樟, 王士同. 一种面向中小规模数据集的模糊分类方法. 软件学报, 2019, 30(12): 3637−3650. http://www.jos.org.
                     cn/1000-9825/5590.htm [doi: 10.13328/j.cnki.jos.005590]

                                                                          王士同(1964-), 男, 教授, 博士生导师, CCF  专
                            工智能, 模式识别.                                   业会员, 主要研究领域为模式识别, 人工智能.
   341   342   343   344   345   346   347   348   349   350   351