Page 136 - 摩擦学学报2025年第5期
P. 136

第 45 卷     第 5 期                      摩擦学学报(中英文)                                       Vol 45   No 5
            2025  年 5  月                                 Tribology                                   May, 2025

            DOI: 10.16078/j.tribology.2024016        CSTR: 32261.14.j.tribology.2024016
            许华林, 阳浩东, 李雯, 张生光, 胡文颖, 王文中. 阶梯螺旋槽端面密封摩擦学性能数值研究[J]. 摩擦学学报(中英文), 2025,
            45(5): 770−781.    XU Hualin, YANG Haodong, LI Wen, ZHANG Shengguang, HU Wenying, WANG Wenzhong. Numerical Study
            on Tribological Performance of Stepped Spiral Groove Face Seal[J]. Tribology, 2025, 45(5): 770−781.



                     阶梯螺旋槽端面密封摩擦学性能数值研究




                                                          2
                                         1
                                                                   2
                                                                            2
                                                  1
                                  许华林 , 阳浩东 , 李  雯 , 张生光 , 胡文颖 , 王文中                  1*
                                          (1. 北京理工大学 机械与车辆学院,北京 100081;
                                             2. 中国航空发动机研究院,北京 101304)
                摘   要: 为进一步提高用于旋转端面密封的对数螺旋槽启停阶段承载力、开启能力及磨损抑制能力,提出了1种新型
                沿回转方向底部台梯状的阶梯螺旋槽. 建立了螺旋槽端面密封润滑分析模型,结合JFO空化边界条件并利用控制体
                积法对不同几何参数和工况条件的密封摩擦学性能进行了系统分析,获得了定膜厚时液膜承载力、刚度、空化率和
                开启速度以及稳态工况定载荷下的膜厚以及摩擦扭矩. 结果表明:变深度的阶梯螺旋槽在相同膜厚和转速的工况下
                承载能力及液膜刚度均大于对应传统平底螺旋槽,开启速度及空化率均小于对应平底螺旋槽;相同转速和载荷工
                况下稳定运行时,相较平底螺旋槽,阶梯螺旋槽形成了更大的液膜厚度和较小的摩擦扭矩. 螺旋槽底部引入阶梯产
                生了额外的Rayleigh轴承效应是阶梯螺旋槽有效提升密封端面承载力和开启能力的主要机理. 在膜厚H 0 =1 μm,转
                速ω=50 r/min的工况下,与承载能力最优的平底螺旋槽对比,阶梯螺旋槽压力峰值提高7.14%,空化率减小93.42%,
                总承载力提升19.83%.
                关键词: 端面密封; 阶梯螺旋槽; 空化; 摩擦学性能; Rayleigh轴承效应
                中图分类号: TH117.1; TH117.2            文献标志码: A                文章编号: 1004-0595(2025)05–0770–12


                           Numerical Study on Tribological Performance of
                                      Stepped Spiral Groove Face Seal


                                                                       2
                                                                                    2
                           1
                                           1
                                                   2
                  XU Hualin , YANG Haodong , LI Wen , ZHANG Shengguang , HU Wenying , WANG Wenzhong   1*
                          (1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;
                                       2. Aero Engine Academy of China, Beijing 101304, China)
                 Abstract: Mechanical seals rely on the hydrodynamic effect to develop the liquid film between the rotating ring and the
                 stationary ring in order to improve the tribological characteristics. However, when the speed is low during the start-stop
                 period, the hydrodynamic action is weak, the load capacity of the film is decreased, and the effective oil film cannot be
                 well  developed,  which  will  lead  to  a  dramatically  increased  friction  and  wear  between  the  rings.  At  present,  the
                 logarithmic spiral groove structure is one of the most effective methods to improve the load capacity of mechanical
                 seals. It is simple in design but has good effect of enhancing the hydrodynamic action, and has been widely used. There
                 are many researches focus on the geometric optimization of spiral groove, the majority of them are to reduce the leakage
                 rather than to improve the load capacity, so there is a serious problem of wear. In other studies, intricate structures and
                 shapes are proposed to improve load capacity, however, the inherent advantages of the original spiral groove geometry
                 lie in its simplicity and ease of design and manufacture.


            Received 17 January 2024, revised 10 March 2024, accepted 11 March 2024, available online 23 July 2024.
            *Corresponding author. E-mail: wangwzhong@bit.edu.cn, Tel: +86-10-68911404.
            This project was supported by the National Natural Science Foundationof China (U2141243) and Stable Support for Basic Research
            (03zc1023001).
            国家自然科学基金项目(U2141243)和基础研究稳定支持项目(03zc1023001)资助.
   131   132   133   134   135   136   137   138   139   140   141