Page 91 - 《摩擦学学报》2021年第5期
P. 91
第 41 卷 第 5 期 摩 擦 学 学 报 Vol 41 No 5
2021 年 9 月 Tribology Sept, 2021
DOI: 10.16078/j.tribology.2020087
热变形求解及其对高速点接触弹流
润滑影响研究
*
孟凡明 , 程志涛, 巩加玉
(重庆大学 机械传动国家重点实验室, 重庆 400044)
摘 要: 提出了一种固体表面热变形求解新方法(ITD),由此研究了热变形对高速点接触弹流润滑行为的影响. 为
此,基于计入流体惯性项的Reynolds方程获得了油膜压力,采用追赶法对润滑剂和接触固体的温度进行了求解,进
而研究了不同工况下有无热变形的高速点接触非牛顿热弹流润滑性能. 采用有限元法和离散累加法对ITD法进行
了验证,通过中心膜厚试验验证了考虑热变形的正确性. 结果表明:ITD法可准确快速地计算表面热变形;考虑热变
形后,油膜厚度降低且向油膜出口倾斜,考虑热变形后的中心膜厚更接近试验结果.
关键词: 热变形; 热弹流润滑; 高速点接触; 油膜厚度; ITD法
中图分类号: TH133.33 文献标志码: A 文章编号: 1004-0595(2021)05–0680–10
Solution of Thermal Deformation and Its Effects on High-Speed
Point-Contact Elastohydrodynamic Lubrication
*
MENG Fanming , CHENG Zhitao, GONG Jiayu
(The State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China)
Abstract: A new method (ITD method) to solve the thermal deformation of contacting surfaces was proposed, and its
effect on the non-Newtonian thermal elastohydrodynamic lubrication (TEHL) model for the high-speed point contacts
was studied. The film pressure was calculated using the Reynolds equation considering the fluid inertia force, and the
temperatures of the lubricant and contacting solids were computed with the chase-after method. At the varied working
conditions, effects of the thermal deformation on the TEHL performances were analyzed. To validate the model, the ITD
method was verified with the finite element method and discrete summation method, and a central film thickness
experiment was conducted to verify the rationality of the TEHL model considering the thermal deformation. It was
revealed that the ITD method accurately and quickly evaluated the thermal deformation. With the thermal deformation
considered, the film thickness reduced and inclined towards the outlet. Moreover, the central film thickness with the
thermal deformation was close to the experimental result.
Key words: thermal deformation; TEHL; high-speed point-contact; film thickness; ITD method
[3]
作为工程机械领域常见的运动副形式之一,国内 现象;Kim等 提出了一种完全耦合方法用于求解非
外学者已对点接触的热弹流润滑问题开展了广泛研 牛顿流体点接触热弹流润滑问题,求解得到的固体表
[1]
[4]
究. 例如,Lee等 的研究表明,牛顿流体点接触下最大 面温度与试验结果较好地吻合;Liu等 比较了非牛顿
油膜温度随着载荷和滑滚比的增大而增大;Guo等 [2] 流体和牛顿流体椭圆接触热弹流润滑性能的差异,发
研究了两反向移动的椭圆接触表面的牛顿热弹流润 现非牛顿流体产生的油膜温度更低;崔伟勤等 结合
[5]
滑特性,发现在油膜轮廓曲线的接触中心区存在凹陷 数值计算得到的接触区温度分布,探讨了牵引模式下
Received 18 May 2020, revised 13 September 2020, accepted 13 September 2020, available online 28 September 2021.
*Corresponding author. E-mail: fmmeng@cqu.edu.cn, Tel: +86-13983981735.
The project was supported by the National Key R&D Program of China (2018YFB2000604).
国家重点研发计划项目(2018YFB2000604)资助.