Page 132 - 《摩擦学学报》2021年第5期
P. 132
第 5 期 王大刚, 等: 考虑微动磨损的钢丝微动疲劳裂纹扩展寿命预测研究 721
钢丝微动疲劳寿命(微动疲劳断裂对应疲劳周次)试验 10.1016/j.triboint.2012.04.008.
值为31 860次;由图11(b~e)可知,微动疲劳断裂后,疲 [ 5 ] Wang Dagang, Song Daozhu, Wang Xiangru, et al. Tribo-fatigue
behaviors of steel wires under coupled tension-torsion in different
劳钢丝椭圆状裂纹前缘长轴、短轴长度分别为998.8 μm
environmental media[J]. Wear, 2019, 420-421: 38–53. doi: 10.1016/
和505.8 μm,最大裂纹深度和裂纹萌生位置分别为498 μm
j.wear.2018.12.038.
和l=62 μm. 由上文可知,微动疲劳裂纹萌生时疲劳钢
[ 6 ] Takeuchi M, Waterhouse R B, Mutoh Y, et al. The behaviour of
丝初始裂纹深度为70 μm;依据3.3节、该组微动疲劳试 fatigue crack growth in the fretting-corrosion-fatigue of high tensile
验参数、磨痕尺寸参数和裂纹特性参数等,开展钢丝 roping steel in air and seawater[J]. Fatigue & Fracture of
微动疲劳裂纹扩展有限元分析,可获得微动疲劳断裂 Engineering Materials & Structures, 1991, 14(1): 69–77. doi:
时疲劳钢丝裂纹扩展深度预测值为376 μm[图11(f)], 10.1111/j.1460-2695.1991.tb00643.x.
故疲劳钢丝最大裂纹深度预测值为446 μm,这与最大 [ 7 ] Guo Tong, Liu Zhongxiang, Correia J, et al. Experimental study on
fretting-fatigue of bridge cable wires[J]. International Journal of
裂纹深度试验值相对误差10.4%. 由图11(g)可得疲劳
Fatigue, 2020, 131: 105321. doi: 10.1016/j.ijfatigue.2019.105321.
钢丝微动疲劳裂纹扩展寿命预测值为7 660次;通过微
[ 8 ] Wang Dagang, Li Xiaowu, Wang Xiangru, et al. Dynamic wear
动疲劳试验可知,疲劳钢丝微动疲劳寿命和裂纹萌生 evolution and crack propagation behaviors of steel wires during
寿命分别为31 860和25 000次,故微动疲劳裂纹扩展 fretting-fatigue[J]. Tribology International, 2016, 101: 348–355. doi:
寿命试验值为6 860次. 因此,疲劳钢丝微动疲劳裂纹 10.1016/j.triboint.2016.05.003.
扩展寿命预测值和试验值相对误差为11.7%,进一步 [ 9 ] Wang Xiangru, Wang Dagang, Li Xiaowu, et al. Comparative
验证了考虑微动磨损的钢丝微动疲劳裂纹扩展寿命 analyses of torsional fretting, longitudinal fretting and combined
longitudinal and torsional fretting behaviors of steel wires[J].
预测模型正确性.
Engineering Failure Analysis, 2018, 85: 116–125. doi: 10.1016/
4 结论 j.engfailanal.2017.12.002.
[10] Zhang Dekun, Yang Xuehui, Chen Kai, et al. Fretting fatigue
a. 运用有限元迭代法和摩擦学理论建立钢丝微 behavior of steel wires contact interface under different crossing
动磨损预测模型,选取微动疲劳过程中稳定阶段磨损 angles[J]. Wear, 2018, 400-401: 52–61. doi: 10.1016/j.wear.2017.
3
−9
系数平均值4.8×10 mm /(N·mm)预测钢丝微动磨损 12.014.
演化可保证预测正确性. 疲劳钢丝微动疲劳断口呈现 [11] Llavori I, Zabala A, Otaño N, et al. Development of a modular
fretting wear and fretting fatigue tribometer for thin steel wires:
裂纹萌生区、扩展区和瞬断区,疲劳钢丝主要呈I型裂
design concept and preliminary analysis of the effect of crossing
纹扩展.
angle on tangential force[J]. Metals, 2019, 9(6): 674. doi: 10.3390/
b. 运用有限元网格重划分和虚拟裂纹闭合技术、
met9060674.
断裂力学理论等建立钢丝微动疲劳裂纹扩展寿命预 [12] Sun Zheng, Xu Chunming, Peng Yuxing, et al. Fretting tribological
测模型,考虑微动磨损的钢丝微动疲劳裂纹扩展寿命 behaviors of steel wires under lubricating grease with compound
预测值和试验值吻合较好,验证了预测模型正确性. additives of graphene and graphite[J]. Wear, 2020, 454-455: 203333.
doi: 10.1016/j.wear.2020.203333.
参 考 文 献
[13] Xu Chunming, Peng Yuxing, Zhu Zhencai, et al. Fretting friction
[ 1 ] Hoeppner D W, Chandrasekaran V, Elliott C B. Fretting fatigue: and wear of steel wires in tension-torsion and helical contact
current technology and practices[M]. West Conshohocken, PA: form[J]. Wear, 2019, 432-433: 202946. doi: 10.1016/j.wear.2019.
ASTM International, 2000. 202946.
[ 2 ] Wang Dagang, Li Xiaowu, Wang Xiangru, et al. Effects of hoisting [14] Zhao Weijian, Zhang Dekun, Zhang Zefeng, et al. Effect of contact
parameters on dynamic contact characteristics between the rope and load on the fretting fatigue of steel wire under alkaline corrosive
friction lining in a deep coal mine[J]. Tribology International, 2016, environment[J]. Tribology, 2012, 32(3): 306–312 (in Chinese) [赵维
96: 31–42. doi: 10.1016/j.triboint.2015.12.019. 建, 张德坤, 张泽锋, 等. 碱性腐蚀环境下接触载荷对钢丝微动疲
[ 3 ] Wang Dagang, Zhang Dekun, Ge Shirong. Fretting-fatigue behavior 劳行为的影响[J]. 摩擦学学报, 2012, 32(3): 306–312]. doi: 10.16078/
of steel wires in low cycle fatigue[J]. Materials & Design, 2011, j.tribology.2012.03.006.
32(10): 4986–4993. doi: 10.1016/j.matdes.2011.06.037. [15] Song Daozhu. Research on crack growth evolution and
[ 4 ] Wang Dagang, Zhang Dekun, Ge Shirong. Effect of displacement electrochemical corrosion behavior of tensile and torsional
amplitude on fretting fatigue behavior of hoisting rope wires in low composite fretting fatigue of mining steel wire in acidic solution[D].
cycle fatigue[J]. Tribology International, 2012, 52: 178–189. doi: Xuzhou: China University of Mining and Technology, 2019 (in