Page 132 - 《摩擦学学报》2021年第5期
P. 132

第 5 期                  王大刚, 等: 考虑微动磨损的钢丝微动疲劳裂纹扩展寿命预测研究                                       721

            钢丝微动疲劳寿命(微动疲劳断裂对应疲劳周次)试验                               10.1016/j.triboint.2012.04.008.
            值为31 860次;由图11(b~e)可知,微动疲劳断裂后,疲                    [  5  ]  Wang  Dagang,  Song  Daozhu,  Wang  Xiangru,  et  al.  Tribo-fatigue
                                                                   behaviors  of  steel  wires  under  coupled  tension-torsion  in  different
            劳钢丝椭圆状裂纹前缘长轴、短轴长度分别为998.8 μm
                                                                   environmental media[J]. Wear, 2019, 420-421: 38–53. doi: 10.1016/
            和505.8 μm,最大裂纹深度和裂纹萌生位置分别为498 μm
                                                                   j.wear.2018.12.038.
            和l=62 μm. 由上文可知,微动疲劳裂纹萌生时疲劳钢
                                                               [  6  ]  Takeuchi  M,  Waterhouse  R  B,  Mutoh  Y,  et  al.  The  behaviour  of
            丝初始裂纹深度为70 μm;依据3.3节、该组微动疲劳试                           fatigue crack growth in the fretting-corrosion-fatigue of high tensile
            验参数、磨痕尺寸参数和裂纹特性参数等,开展钢丝                                roping  steel  in  air  and  seawater[J].  Fatigue  &  Fracture  of
            微动疲劳裂纹扩展有限元分析,可获得微动疲劳断裂                                Engineering  Materials  &  Structures,  1991,  14(1):  69–77.  doi:
            时疲劳钢丝裂纹扩展深度预测值为376 μm[图11(f)],                         10.1111/j.1460-2695.1991.tb00643.x.
            故疲劳钢丝最大裂纹深度预测值为446 μm,这与最大                         [  7  ]  Guo Tong, Liu Zhongxiang, Correia J, et al. Experimental study on
                                                                   fretting-fatigue  of  bridge  cable  wires[J].  International  Journal  of
            裂纹深度试验值相对误差10.4%. 由图11(g)可得疲劳
                                                                   Fatigue, 2020, 131: 105321. doi: 10.1016/j.ijfatigue.2019.105321.
            钢丝微动疲劳裂纹扩展寿命预测值为7 660次;通过微
                                                               [  8  ]  Wang  Dagang,  Li  Xiaowu,  Wang  Xiangru,  et  al.  Dynamic  wear
            动疲劳试验可知,疲劳钢丝微动疲劳寿命和裂纹萌生                                evolution  and  crack  propagation  behaviors  of  steel  wires  during
            寿命分别为31 860和25 000次,故微动疲劳裂纹扩展                          fretting-fatigue[J]. Tribology International, 2016, 101: 348–355. doi:
            寿命试验值为6 860次. 因此,疲劳钢丝微动疲劳裂纹                            10.1016/j.triboint.2016.05.003.
            扩展寿命预测值和试验值相对误差为11.7%,进一步                          [  9  ]  Wang  Xiangru,  Wang  Dagang,  Li  Xiaowu,  et  al.  Comparative
            验证了考虑微动磨损的钢丝微动疲劳裂纹扩展寿命                                 analyses  of  torsional  fretting,  longitudinal  fretting  and  combined
                                                                   longitudinal  and  torsional  fretting  behaviors  of  steel  wires[J].
            预测模型正确性.

                                                                   Engineering  Failure  Analysis,  2018,  85:  116–125.  doi:  10.1016/
            4    结论                                                j.engfailanal.2017.12.002.
                                                               [10]  Zhang  Dekun,  Yang  Xuehui,  Chen  Kai,  et  al.  Fretting  fatigue
                a. 运用有限元迭代法和摩擦学理论建立钢丝微                             behavior  of  steel  wires  contact  interface  under  different  crossing
            动磨损预测模型,选取微动疲劳过程中稳定阶段磨损                                angles[J].  Wear,  2018,  400-401:  52–61.  doi:  10.1016/j.wear.2017.
                                  3
                             −9
            系数平均值4.8×10  mm /(N·mm)预测钢丝微动磨损                        12.014.
            演化可保证预测正确性. 疲劳钢丝微动疲劳断口呈现                           [11]  Llavori  I,  Zabala  A,  Otaño  N,  et  al.  Development  of  a  modular
                                                                   fretting  wear  and  fretting  fatigue  tribometer  for  thin  steel  wires:
            裂纹萌生区、扩展区和瞬断区,疲劳钢丝主要呈I型裂
                                                                   design  concept  and  preliminary  analysis  of  the  effect  of  crossing
            纹扩展.
                                                                   angle on tangential force[J]. Metals, 2019, 9(6): 674. doi: 10.3390/
                b. 运用有限元网格重划分和虚拟裂纹闭合技术、
                                                                   met9060674.
            断裂力学理论等建立钢丝微动疲劳裂纹扩展寿命预                             [12]  Sun Zheng, Xu Chunming, Peng Yuxing, et al. Fretting tribological
            测模型,考虑微动磨损的钢丝微动疲劳裂纹扩展寿命                                behaviors  of  steel  wires  under  lubricating  grease  with  compound
            预测值和试验值吻合较好,验证了预测模型正确性.                                additives of graphene and graphite[J]. Wear, 2020, 454-455: 203333.
                                                                   doi: 10.1016/j.wear.2020.203333.
            参 考 文 献
                                                               [13]  Xu  Chunming,  Peng  Yuxing,  Zhu  Zhencai,  et  al.  Fretting  friction
            [  1  ]  Hoeppner  D  W,  Chandrasekaran  V,  Elliott  C  B.  Fretting  fatigue:  and  wear  of  steel  wires  in  tension-torsion  and  helical  contact
                 current  technology  and  practices[M].  West  Conshohocken,  PA:  form[J].  Wear,  2019,  432-433:  202946.  doi:  10.1016/j.wear.2019.
                 ASTM International, 2000.                         202946.
            [  2  ]  Wang Dagang, Li Xiaowu, Wang Xiangru, et al. Effects of hoisting  [14]  Zhao Weijian, Zhang Dekun, Zhang Zefeng, et al. Effect of contact
                 parameters on dynamic contact characteristics between the rope and  load  on  the  fretting  fatigue  of  steel  wire  under  alkaline  corrosive
                 friction lining in a deep coal mine[J]. Tribology International, 2016,  environment[J]. Tribology, 2012, 32(3): 306–312 (in Chinese) [赵维
                 96: 31–42. doi: 10.1016/j.triboint.2015.12.019.   建, 张德坤, 张泽锋, 等. 碱性腐蚀环境下接触载荷对钢丝微动疲
            [  3  ]  Wang Dagang, Zhang Dekun, Ge Shirong. Fretting-fatigue behavior  劳行为的影响[J]. 摩擦学学报, 2012, 32(3): 306–312]. doi: 10.16078/
                 of  steel  wires  in  low  cycle  fatigue[J].  Materials  &  Design,  2011,  j.tribology.2012.03.006.
                 32(10): 4986–4993. doi: 10.1016/j.matdes.2011.06.037.  [15]  Song  Daozhu.  Research  on  crack  growth  evolution  and
            [  4  ]  Wang  Dagang,  Zhang  Dekun,  Ge  Shirong.  Effect  of  displacement  electrochemical  corrosion  behavior  of  tensile  and  torsional
                 amplitude on fretting fatigue behavior of hoisting rope wires in low  composite fretting fatigue of mining steel wire in acidic solution[D].
                 cycle  fatigue[J].  Tribology  International,  2012,  52:  178–189.  doi:  Xuzhou:  China  University  of  Mining  and  Technology,  2019  (in
   127   128   129   130   131   132   133   134   135   136   137