Page 120 - 《摩擦学学报》2021年第4期
P. 120
第 4 期 张关震, 等: 不均匀组织ER8车轮滚动接触疲劳性能研究 563
吉, 马蕾, 郭俊, 等. 干-水态下圆形硌伤对钢轨材料滚动接触疲劳 [27] Zhang Guanzhen, Ren Ruiming, Wu Si, et al. Influence of non-
特性影响[J]. 摩擦学学报, 2017, 37(4): 544–550]. doi: 10.16078/ uniform microstructure on shelling damage of wheel tread for high
j.tribology.2017.04.017. speed EMU[J]. China Railway Science, 2019, 40(5): 80–86
[17] Makino T, Kato T, Hirakawa K. The effect of slip ratio on the (in Chinese) [张关震, 任瑞铭, 吴斯, 等. 不均匀组织对高速动车组
rolling contact fatigue property of railway wheel steel[J]. 车轮踏面剥离损伤的影响[J]. 中国铁道科学, 2019, 40(5): 80–86].
International Journal of Fatigue, 2012, 36(1): 68–79. doi: 10.1016/ doi: 10.3969/j.issn.1001-4632.2019.05.11.
j.ijfatigue.2011.08.014. [28] Suresh S. Fatigue of materials[M]. Beijing: National Defense of
[18] Ekberg A, Kabo E. Fatigue of railway wheels and rails under rolling Industry Press, 1999.
contact and thermal loading-an overview[J]. Wear, 2005, 258(7-8): [29] Liu Chunpeng, Ren Ruiming, Liu Deyi, et al. An EBSD
1288–1300. doi: 10.1016/j.wear.2004.03.039.. investigation on the evolution of the surface microstructure of D2
[19] Huang Yubin, He Chenggang, Ma Lei, et al. Experimental study on wheel steel during rolling contact fatigue[J]. Tribology Letters,
initiation of surface fatigue crack of wheel material under dry 2020, 68: 47(1–11). doi: 10.1007/s11249-020-1277-1.
condition[J]. Tribology, 2016, 36(2): 194–200 (in Chinese) [黄育斌, [30] Wang Shuaishuai, Zhao Xiujuan, Liu Pengtao, et al. Investigation of
何成刚, 马蕾, 等. 干态下车轮材料表面疲劳裂纹萌生试验研究 the relation between rolling contact fatigue property and
[J]. 摩擦学学报, 2016, 36(2): 194–200]. doi: 10.16078/j.tribology. microstructure on the surface layer of D2 wheel steel[J]. Materials
2016.02.008. Sciences and Applications, 2019, 10(8): 509–526. doi: 10.4236/
[20] Bogdański S, Lewicki P. 3D model of liquid entrapment mechanism msa.2019.108037.
for rolling contact fatigue cracks in rails[J]. Wear, 2008, 265(9-10): [31] Franklin F J, Kapoor A. Modelling wear and crack initiation in
1356–1362. doi: 10.1016/j.wear.2008.03.014. rails[J]. Proceedings of the Institution of Mechanical Engineers, Part
[21] Zhou Tingwei, Zhao Hai, Zhou Hongwei, et al. Influences of F:Journal of Rail and Rapid Transit, 2007, 221(1): 23–33. doi:
microstructure on rolling-slip contact fatigue wear properties of 10.1243/0954409jrrt60.
high-speed wheel steel[J]. Transactions of Materials and Heat [32] Chen Hu, Zhang Chi, Liu Wenbo, et al. Microstructure evolution of
Treatment, 2020, 41(11): 110–117 (in Chinese) [周霆伟, 赵海, 周红 a hypereutectoid pearlite steel under rolling-sliding contact
伟, 等. 原始组织对高速车轮钢滚滑接触疲劳磨损性能的影响[J]. loading[J]. Materials Science and Engineering:A, 2016, 655: 50–59.
材料热处理学报, 2020, 41(11): 110–117]. doi: 10.13289/j.issn.1009- doi: 10.1016/j.msea.2015.12.082.
6264.2020-0176. [33] Xie Y J, Hu X Z, Wang X H, et al. A theoretical note on mode-I
[22] Chen Shuiyou, Liu Jihua, Guo Jun, et al. Effect of wheel material crack branching and kinking[J]. Engineering Fracture Mechanics,
characteristics on wear and fatigue property of wheel-rail[J]. 2011, 78(6): 919–9292011.01.023. doi: 10.1016/j.engfracmech.
Tribology, 2015, 35(5): 531–537 (in Chinese) [陈水友, 刘吉华, 郭 [34] Hamada S, Sasaki D, Ueda M, et al. Fatigue limit evaluation
俊, 等. 车轮材料特性对轮轨磨损与疲劳性能影响的研究[J]. 摩擦 considering crack initiation for lamellar pearlitic steel[J]. Procedia
学 学 报 , 2015, 35(5): 531–537]. doi: 10.16078/j.tribology.2015. Engineering, 2011, 10: 1467–147204.245. doi: 10.1016/j.proeng.
05.003. 2011.
[23] Li Gen, Hong Zhiyuan, Yan Qingzhi. The influence of [35] Guan Mingfei, Yu Hao. Fatigue crack growth behaviors in hot-rolled
microstructure on the rolling contact fatigue of steel for high-speed- low carbon steels: a comparison between ferrite-pearlite and ferrite-
train wheel[J]. Wear, 2015, 342-343: 349–355. doi: 10.1016/j.wear. bainite microstructures[J]. Materials Science and Engineering:A,
2015.10.002. 2013, 559: 875–881. doi: 10.1016/j.msea.2012.09.036.
[24] Liu Chunpeng, Liu Pengtao, Pan Jinzhi, et al. Effect of pre-wear on [36] Suresh S. Fatigue of Materials[M]. New York: Cambridge
the rolling contact fatigue property of D2 wheel steel[J]. Wear, University Press, 1991.
2020, 442-443: 203154. doi: 10.1016/j.wear.2019.203154. [37] Knothe K, Liebelt S. Determination of temperatures for sliding
[25] Zhang Guanzhen, Ren Ruiming, Yin Hongxiang, et al. contact with applications for wheel-rail systems[J]. Wear, 1995,
Characteristics and causes of abnormal microstructure in EMU 189(1-2): 91–99. doi: 10.1016/0043-1648(95)06666-7.
wheels[J]. China Railway Science, 2020, 41(4): 108–115 [38] Dakshinamurthy M, Ma A. Crack propagation in TRIP assisted
(in Chinese) [张关震, 任瑞铭, 尹鸿祥, 等. 动车组车轮异常组织特 steels modeled by crystal plasticity and cohesive zone method[J].
征及成因[J]. 中国铁道科学, 2020, 41(4): 108–115]. doi: 10.3969/ Theoretical and Applied Fracture Mechanics, 2018, 96: 545–555.
j.issn.1001-4632.2020.04.13. doi: 10.1016/j.tafmec.2018.06.005.
[26] Gao Bo, Tan Zhunli, Liu Zinan, et al. Influence of non-uniform [39] Avramovic-Cingara G, Ososkov Y, Jain M K, et al. Effect of
microstructure on rolling contact fatigue behavior of high-speed martensite distribution on damage behaviour in DP600 dual phase
wheel steels[J]. Engineering Failure Analysis, 2019, 100: 485–491. steels[J]. Materials Science and Engineering:A, 2009, 516(1-2):
doi: 10.1016/j.engfailanal.2019.03.002. 7–16. doi: 10.1016/j.msea.2009.03.055.