Page 120 - 《摩擦学学报》2021年第4期
P. 120

第 4 期                      张关震, 等: 不均匀组织ER8车轮滚动接触疲劳性能研究                                      563

                 吉, 马蕾, 郭俊, 等. 干-水态下圆形硌伤对钢轨材料滚动接触疲劳            [27]  Zhang  Guanzhen,  Ren  Ruiming,  Wu  Si,  et  al.  Influence  of  non-
                 特性影响[J]. 摩擦学学报, 2017, 37(4): 544–550]. doi: 10.16078/  uniform microstructure on shelling damage of wheel tread for high
                 j.tribology.2017.04.017.                          speed  EMU[J].  China  Railway  Science,  2019,  40(5):  80–86
            [17]  Makino  T,  Kato  T,  Hirakawa  K.  The  effect  of  slip  ratio  on  the  (in Chinese) [张关震, 任瑞铭, 吴斯, 等. 不均匀组织对高速动车组
                 rolling  contact  fatigue  property  of  railway  wheel  steel[J].  车轮踏面剥离损伤的影响[J]. 中国铁道科学, 2019, 40(5): 80–86].
                 International Journal of Fatigue, 2012, 36(1): 68–79. doi: 10.1016/  doi: 10.3969/j.issn.1001-4632.2019.05.11.
                 j.ijfatigue.2011.08.014.                      [28]  Suresh  S.  Fatigue  of  materials[M].  Beijing:  National  Defense  of
            [18]  Ekberg A, Kabo E. Fatigue of railway wheels and rails under rolling  Industry Press, 1999.
                 contact and thermal loading-an overview[J]. Wear, 2005, 258(7-8):  [29]  Liu  Chunpeng,  Ren  Ruiming,  Liu  Deyi,  et  al.  An  EBSD
                 1288–1300. doi: 10.1016/j.wear.2004.03.039..      investigation  on  the  evolution  of  the  surface  microstructure  of  D2
            [19]  Huang Yubin, He Chenggang, Ma Lei, et al. Experimental study on  wheel  steel  during  rolling  contact  fatigue[J].  Tribology  Letters,
                 initiation  of  surface  fatigue  crack  of  wheel  material  under  dry  2020, 68: 47(1–11). doi: 10.1007/s11249-020-1277-1.
                 condition[J]. Tribology, 2016, 36(2): 194–200 (in Chinese) [黄育斌,  [30]  Wang Shuaishuai, Zhao Xiujuan, Liu Pengtao, et al. Investigation of
                 何成刚, 马蕾, 等. 干态下车轮材料表面疲劳裂纹萌生试验研究                   the  relation  between  rolling  contact  fatigue  property  and
                 [J]. 摩擦学学报, 2016, 36(2): 194–200]. doi: 10.16078/j.tribology.  microstructure on the surface layer of D2 wheel steel[J]. Materials
                 2016.02.008.                                      Sciences  and  Applications,  2019,  10(8):  509–526.  doi:  10.4236/
            [20]  Bogdański S, Lewicki P. 3D model of liquid entrapment mechanism  msa.2019.108037.
                 for rolling contact fatigue cracks in rails[J]. Wear, 2008, 265(9-10):  [31]  Franklin  F  J,  Kapoor  A.  Modelling  wear  and  crack  initiation  in
                 1356–1362. doi: 10.1016/j.wear.2008.03.014.       rails[J]. Proceedings of the Institution of Mechanical Engineers, Part
            [21]  Zhou  Tingwei,  Zhao  Hai,  Zhou  Hongwei,  et  al.  Influences  of  F:Journal  of  Rail  and  Rapid  Transit,  2007,  221(1):  23–33.  doi:
                 microstructure  on  rolling-slip  contact  fatigue  wear  properties  of  10.1243/0954409jrrt60.
                 high-speed  wheel  steel[J].  Transactions  of  Materials  and  Heat  [32]  Chen Hu, Zhang Chi, Liu Wenbo, et al. Microstructure evolution of
                 Treatment, 2020, 41(11): 110–117 (in Chinese) [周霆伟, 赵海, 周红  a  hypereutectoid  pearlite  steel  under  rolling-sliding  contact
                 伟, 等. 原始组织对高速车轮钢滚滑接触疲劳磨损性能的影响[J].                 loading[J]. Materials Science and Engineering:A, 2016, 655: 50–59.
                 材料热处理学报, 2020, 41(11): 110–117]. doi: 10.13289/j.issn.1009-  doi: 10.1016/j.msea.2015.12.082.
                 6264.2020-0176.                               [33]  Xie Y J, Hu X Z, Wang X H, et al. A theoretical note on mode-I
            [22]  Chen Shuiyou, Liu Jihua, Guo Jun, et al. Effect of wheel material  crack  branching  and  kinking[J].  Engineering  Fracture  Mechanics,
                 characteristics  on  wear  and  fatigue  property  of  wheel-rail[J].  2011, 78(6): 919–9292011.01.023. doi: 10.1016/j.engfracmech.
                 Tribology, 2015, 35(5): 531–537 (in Chinese) [陈水友, 刘吉华, 郭  [34]  Hamada  S,  Sasaki  D,  Ueda  M,  et  al.  Fatigue  limit  evaluation
                 俊, 等. 车轮材料特性对轮轨磨损与疲劳性能影响的研究[J]. 摩擦                considering  crack  initiation  for  lamellar  pearlitic  steel[J].  Procedia
                 学 学 报 ,  2015,  35(5):  531–537].  doi:  10.16078/j.tribology.2015.  Engineering,  2011,  10:  1467–147204.245.  doi:  10.1016/j.proeng.
                 05.003.                                           2011.
            [23]  Li  Gen,  Hong  Zhiyuan,  Yan  Qingzhi.  The  influence  of  [35]  Guan Mingfei, Yu Hao. Fatigue crack growth behaviors in hot-rolled
                 microstructure on the rolling contact fatigue of steel for high-speed-  low carbon steels: a comparison between ferrite-pearlite and ferrite-
                 train wheel[J]. Wear, 2015, 342-343: 349–355. doi: 10.1016/j.wear.  bainite  microstructures[J].  Materials  Science  and  Engineering:A,
                 2015.10.002.                                      2013, 559: 875–881. doi: 10.1016/j.msea.2012.09.036.
            [24]  Liu Chunpeng, Liu Pengtao, Pan Jinzhi, et al. Effect of pre-wear on  [36]  Suresh  S.  Fatigue  of  Materials[M].  New  York:  Cambridge
                 the  rolling  contact  fatigue  property  of  D2  wheel  steel[J].  Wear,  University Press, 1991.
                 2020, 442-443: 203154. doi: 10.1016/j.wear.2019.203154.  [37]  Knothe  K,  Liebelt  S.  Determination  of  temperatures  for  sliding
            [25]  Zhang  Guanzhen,  Ren  Ruiming,  Yin  Hongxiang,  et  al.  contact  with  applications  for  wheel-rail  systems[J].  Wear,  1995,
                 Characteristics  and  causes  of  abnormal  microstructure  in  EMU  189(1-2): 91–99. doi: 10.1016/0043-1648(95)06666-7.
                 wheels[J].  China  Railway  Science,  2020,  41(4):  108–115  [38]  Dakshinamurthy  M,  Ma  A.  Crack  propagation  in  TRIP  assisted
                 (in Chinese) [张关震, 任瑞铭, 尹鸿祥, 等. 动车组车轮异常组织特        steels  modeled  by  crystal  plasticity  and  cohesive  zone  method[J].
                 征及成因[J]. 中国铁道科学, 2020, 41(4): 108–115]. doi: 10.3969/  Theoretical  and  Applied  Fracture  Mechanics,  2018,  96:  545–555.
                 j.issn.1001-4632.2020.04.13.                      doi: 10.1016/j.tafmec.2018.06.005.
            [26]  Gao  Bo,  Tan  Zhunli,  Liu  Zinan,  et  al.  Influence  of  non-uniform  [39]  Avramovic-Cingara  G,  Ososkov  Y,  Jain  M  K,  et  al.  Effect  of
                 microstructure  on  rolling  contact  fatigue  behavior  of  high-speed  martensite  distribution  on  damage  behaviour  in  DP600  dual  phase
                 wheel steels[J]. Engineering Failure Analysis, 2019, 100: 485–491.  steels[J].  Materials  Science  and  Engineering:A,  2009,  516(1-2):
                 doi: 10.1016/j.engfailanal.2019.03.002.           7–16. doi: 10.1016/j.msea.2009.03.055.
   115   116   117   118   119   120   121   122   123   124   125