Page 119 - 《摩擦学学报》2021年第4期
P. 119
562 摩 擦 学 学 报 第 41 卷
剧,其正常组织已趋向纤维化,其渗碳体的片层间距 009.
明显减小,且出现了断裂、破碎和溶解[见图6(c)];而上 [ 6 ] Ekberg A, Kabo E, Andersson H. An engineering model for
prediction of rolling contact fatigue of railway wheels[J]. Fatigue &
贝氏体中的渗碳体略有细化,但仍然呈短棒状或颗粒
Fracture of Engineering Materials & Structures, 2002, 25(10):
状,其铁素体有所拉长,层状间距有所减小,总体变形
899–909. doi: 10.1046/j.1460-2695.2002.00535.x.
程度仍不及正常组织明显[见图6(a)]. 上贝和车轮正常
[ 7 ] Zhong W, Hu J J, Li Z B, et al. A study of rolling contact fatigue
组织变形的不协调导致两者组织边界形成应力集中, crack growth in U75V and U71Mn rails[J]. Wear, 2011, 271(1-2):
进而诱发并促使疲劳裂纹的萌生和扩展,如图9(c)所 388–392. doi: 10.1016/j.wear.2010.10.071.
示;主RCF裂纹受接触应力作用其边缘开始出现分支 [ 8 ] Zhao Xueqin, Wang Wenjian, Zhong Wen, et al. Study on coupling
裂纹,部分分支裂纹垂直RCF主裂纹穿过上贝组织向 relation between rolling fatigue crack and wear of rail[J]. Journal of
试样表面传播,当RCF分支裂纹扩展到接触表面,形 the China Railway Society, 2009, 31(2): 84–87 (in Chinese) [赵雪
芹, 王文健, 钟雯, 等. 钢轨滚动疲劳裂纹与磨损耦合关系研究[J].
成了剥落,导致车轮钢出现RCF失效,如图9(d)所示.
铁道学报, 2009, 31(2): 84–87]. doi: 10.3969/j.issn.1001-8360.2009.
4 结论 02.016.
[ 9 ] Liu Chunpeng, Pan Jinzhi, Liu Pengtao, et al. Influence of original
a. 车轮踏面不均匀组织区域在油介质下的RCF极 microstructure on rolling contact fatigue property of D2 wheel
限为1 074 MPa,低于车轮轮辋基体(磨耗到限)正常组 steel[J]. Wear, 2020, 456−457: 203380. doi: 10.1016/j.wear.2020.
织区域的RCF极限(1 112 MPa). 203380.
b. 车轮踏面不均匀组织区域存在大量的上贝氏 [10] Zhang Guanzhen, Liu Chunpeng, Ren Ruiming, et al. Effect of
nonuniform microstructure on wear property of ER8 wheel steel[J].
体,上贝氏体组织的微观组织结构与车轮基体区域正
Wear, 2020, 458-459: 203416. doi: 10.1016/j.wear.2020.203416.
常的珠光体+先共析铁素体组织存在显著区别,破坏
[11] Wang Yanpeng, Ding Haohao, Zou Qiang, et al. Research progress
了车轮正常组织的连续性,引起了正常组织的不均匀.
on rolling contact fatigue of railway wheel treads[J]. Surface
c. 上贝氏体的原始硬度、弹性极限高于正常组
Technology, 2020, 49(5): 120–128 (in Chinese) [王延朋, 丁昊昊,
织,塑性极限小于正常组织,在轮轨接触应力的作用 邹强, 等. 列车车轮踏面滚动接触疲劳研究进展[J]. 表面技术,
下,上贝氏体组织与正常组织弹-塑性变形的不协调 2020, 49(5): 120–128]. doi: 10.16490/j.cnki.issn.1001-3660.2020.
导致两者组织边界处产生应力集中,进而诱发并促进 05.015.
了不均匀组织区域疲劳裂纹的萌生及扩展,加快了车 [12] Zhong Wen, Dong Lin, Wang Yu, et al. A comparative investigation
轮RCF损伤的出现. between rolling contact fatigue and wear of high-speed and heavy-
haul railway[J]. Tribology, 2012, 32(1): 96–101 (in Chinese) [钟雯,
参 考 文 献
董霖, 王宇, 等. 高速与重载铁路的疲劳磨损对比研究[J]. 摩擦学
[ 1 ] Bevan A, Molyneux-Berry P, Eickhoff B, et al. Development and 学报, 2012, 32(1): 96–101]. doi: 10.16078/j.tribology.2012.01.016.
validation of a wheel wear and rolling contact fatigue damage [13] He Chenggang, Zhou Guiyuan, Wang Juan, et al. Effect of curve
model[J]. Wear, 2013, 307(1-2): 100–111. doi: 10.1016/j.wear.2013. radius of rail on rolling contact fatigue properties of wheel steel[J].
08.004. Tribology, 2014, 34(3): 256–261 (in Chinese) [何成刚, 周桂源, 王
[ 2 ] Li Xia, Jin Xuesong, Wen Zefeng, et al. A new integrated model to 娟, 等. 曲率半径对车轮滚动接触疲劳性能的影响[J]. 摩擦学学
predict wheel profile evolution due to wear[J]. Wear, 2011, 271(1- 报, 2014, 34(3): 256–261]. doi: 10.16078/j.tribology.2014.03.016.
2): 227–237. doi: 10.1016/j.wear.2010.10.043. [14] Yang Shanjie, Ren Ruiming, Chen Chunhuan, et al. Microstructure
[ 3 ] Liu Yingbin, Gong Yanhua, Wang Qiang, et al. Evaluation of rolling analysis of deformed white etching layer on wheel flange of high
contact fatigue crack of train wheels[J]. Tribology, 2020, 40(3): speed train[J]. Tribology, 2016, 36(5): 622–628 (in Chinese) [杨姗
305–313 (in Chinese) [刘颍宾, 宫彦华, 王强, 等. 列车车轮滚动接 洁, 任瑞铭, 陈春焕, 等. 动车组车轮轮缘塑性变形白层组织分析
触疲劳裂纹评价研究[J]. 摩擦学学报, 2020, 40(3): 305–313]. doi: [J]. 摩擦学学报, 2016, 36(5): 622–628]. doi: 10.16078/j.tribology.2016.
10.16078/j.tribology.2019210. 05.013.
[ 4 ] Cvetkovski K, Ahlström J. Characterisation of plastic deformation [15] Bower A F. The influence of crack face friction and trapped fluid on
and thermal softening of the surface layer of railway passenger surface initiated rolling contact fatigue cracks[J]. Journal of
wheel treads[J]. Wear, 2013, 300(1-2): 200–204. doi: 10.1016/j.wear. Tribology, 1988, 110(4): 704–711. doi: 10.1115/1.3261717.
2013.01.094. [16] Zhao Xiangji, Ma Lei, Guo Jun, et al. The effect of round defects on
[ 5 ] Sangid M D. The physics of fatigue crack initiation[J]. International rolling contact fatigue characteristics of rail materials under dry-wet
Journal of Fatigue, 2013, 57: 58–72. doi: 10.1016/j.ijfatigue.2012.10. conditions[J]. Tribology, 2017, 37(4): 544–550 (in Chinese) [赵相