Page 119 - 《摩擦学学报》2021年第4期
P. 119

562                                     摩   擦   学   学   报                                 第 41 卷

            剧,其正常组织已趋向纤维化,其渗碳体的片层间距                                009.
            明显减小,且出现了断裂、破碎和溶解[见图6(c)];而上                       [  6  ]  Ekberg  A,  Kabo  E,  Andersson  H.  An  engineering  model  for
                                                                   prediction of rolling contact fatigue of railway wheels[J]. Fatigue &
            贝氏体中的渗碳体略有细化,但仍然呈短棒状或颗粒
                                                                   Fracture  of  Engineering  Materials  &  Structures,  2002,  25(10):
            状,其铁素体有所拉长,层状间距有所减小,总体变形
                                                                   899–909. doi: 10.1046/j.1460-2695.2002.00535.x.
            程度仍不及正常组织明显[见图6(a)]. 上贝和车轮正常
                                                               [  7  ]  Zhong W, Hu J J, Li Z B, et al. A study of rolling contact fatigue
            组织变形的不协调导致两者组织边界形成应力集中,                                crack growth in U75V and U71Mn rails[J]. Wear, 2011, 271(1-2):
            进而诱发并促使疲劳裂纹的萌生和扩展,如图9(c)所                              388–392. doi: 10.1016/j.wear.2010.10.071.
            示;主RCF裂纹受接触应力作用其边缘开始出现分支                           [  8  ]  Zhao Xueqin, Wang Wenjian, Zhong Wen, et al. Study on coupling
            裂纹,部分分支裂纹垂直RCF主裂纹穿过上贝组织向                               relation between rolling fatigue crack and wear of rail[J]. Journal of
            试样表面传播,当RCF分支裂纹扩展到接触表面,形                               the China Railway Society, 2009, 31(2): 84–87 (in Chinese) [赵雪
                                                                   芹, 王文健, 钟雯, 等. 钢轨滚动疲劳裂纹与磨损耦合关系研究[J].
            成了剥落,导致车轮钢出现RCF失效,如图9(d)所示.

                                                                   铁道学报, 2009, 31(2): 84–87]. doi: 10.3969/j.issn.1001-8360.2009.
            4    结论                                                02.016.
                                                               [  9  ]  Liu Chunpeng, Pan Jinzhi, Liu Pengtao, et al. Influence of original
                a. 车轮踏面不均匀组织区域在油介质下的RCF极                           microstructure  on  rolling  contact  fatigue  property  of  D2  wheel
            限为1 074 MPa,低于车轮轮辋基体(磨耗到限)正常组                          steel[J].  Wear,  2020,  456−457:  203380.  doi:  10.1016/j.wear.2020.

            织区域的RCF极限(1 112 MPa).                                  203380.
                b. 车轮踏面不均匀组织区域存在大量的上贝氏                         [10]  Zhang  Guanzhen,  Liu  Chunpeng,  Ren  Ruiming,  et  al.  Effect  of
                                                                   nonuniform microstructure on wear property of ER8 wheel steel[J].
            体,上贝氏体组织的微观组织结构与车轮基体区域正
                                                                   Wear, 2020, 458-459: 203416. doi: 10.1016/j.wear.2020.203416.
            常的珠光体+先共析铁素体组织存在显著区别,破坏
                                                               [11]  Wang Yanpeng, Ding Haohao, Zou Qiang, et al. Research progress
            了车轮正常组织的连续性,引起了正常组织的不均匀.
                                                                   on  rolling  contact  fatigue  of  railway  wheel  treads[J].  Surface
                c. 上贝氏体的原始硬度、弹性极限高于正常组
                                                                   Technology, 2020, 49(5): 120–128 (in Chinese) [王延朋, 丁昊昊,
            织,塑性极限小于正常组织,在轮轨接触应力的作用                                邹强, 等. 列车车轮踏面滚动接触疲劳研究进展[J]. 表面技术,
            下,上贝氏体组织与正常组织弹-塑性变形的不协调                                2020,  49(5):  120–128].  doi:  10.16490/j.cnki.issn.1001-3660.2020.
            导致两者组织边界处产生应力集中,进而诱发并促进                                05.015.
            了不均匀组织区域疲劳裂纹的萌生及扩展,加快了车                            [12]  Zhong Wen, Dong Lin, Wang Yu, et al. A comparative investigation
            轮RCF损伤的出现.                                             between rolling contact fatigue and wear of high-speed and heavy-
                                                                   haul railway[J]. Tribology, 2012, 32(1): 96–101 (in Chinese) [钟雯,
            参 考 文 献
                                                                   董霖, 王宇, 等. 高速与重载铁路的疲劳磨损对比研究[J]. 摩擦学
            [  1  ]  Bevan  A,  Molyneux-Berry  P,  Eickhoff  B,  et  al.  Development  and  学报, 2012, 32(1): 96–101]. doi: 10.16078/j.tribology.2012.01.016.
                 validation  of  a  wheel  wear  and  rolling  contact  fatigue  damage  [13]  He  Chenggang,  Zhou  Guiyuan,  Wang  Juan,  et  al.  Effect  of  curve
                 model[J]. Wear, 2013, 307(1-2): 100–111. doi: 10.1016/j.wear.2013.  radius of rail on rolling contact fatigue properties of wheel steel[J].
                 08.004.                                           Tribology, 2014, 34(3): 256–261 (in Chinese) [何成刚, 周桂源, 王
            [  2  ]  Li Xia, Jin Xuesong, Wen Zefeng, et al. A new integrated model to  娟, 等. 曲率半径对车轮滚动接触疲劳性能的影响[J]. 摩擦学学
                 predict wheel profile evolution due to wear[J]. Wear, 2011, 271(1-  报, 2014, 34(3): 256–261]. doi: 10.16078/j.tribology.2014.03.016.
                 2): 227–237. doi: 10.1016/j.wear.2010.10.043.  [14]  Yang Shanjie, Ren Ruiming, Chen Chunhuan, et al. Microstructure
            [  3  ]  Liu Yingbin, Gong Yanhua, Wang Qiang, et al. Evaluation of rolling  analysis  of  deformed  white  etching  layer  on  wheel  flange  of  high
                 contact  fatigue  crack  of  train  wheels[J].  Tribology,  2020,  40(3):  speed train[J]. Tribology, 2016, 36(5): 622–628 (in Chinese) [杨姗
                 305–313 (in Chinese) [刘颍宾, 宫彦华, 王强, 等. 列车车轮滚动接    洁, 任瑞铭, 陈春焕, 等. 动车组车轮轮缘塑性变形白层组织分析
                 触疲劳裂纹评价研究[J]. 摩擦学学报, 2020, 40(3): 305–313]. doi:  [J]. 摩擦学学报, 2016, 36(5): 622–628]. doi: 10.16078/j.tribology.2016.
                 10.16078/j.tribology.2019210.                     05.013.
            [  4  ]  Cvetkovski  K,  Ahlström  J.  Characterisation  of  plastic  deformation  [15]  Bower A F. The influence of crack face friction and trapped fluid on
                 and  thermal  softening  of  the  surface  layer  of  railway  passenger  surface  initiated  rolling  contact  fatigue  cracks[J].  Journal  of
                 wheel treads[J]. Wear, 2013, 300(1-2): 200–204. doi: 10.1016/j.wear.  Tribology, 1988, 110(4): 704–711. doi: 10.1115/1.3261717.
                 2013.01.094.                                  [16]  Zhao Xiangji, Ma Lei, Guo Jun, et al. The effect of round defects on
            [  5  ]  Sangid M D. The physics of fatigue crack initiation[J]. International  rolling contact fatigue characteristics of rail materials under dry-wet
                 Journal of Fatigue, 2013, 57: 58–72. doi: 10.1016/j.ijfatigue.2012.10.  conditions[J]. Tribology, 2017, 37(4): 544–550 (in Chinese) [赵相
   114   115   116   117   118   119   120   121   122   123   124