Page 50 - 《摩擦学学报》2020年第6期
P. 50
第 6 期 乔小溪, 等: 固-液两相流黑水管道冲蚀磨损的数值模拟研究 733
与弯管相比其值增加. 同时速度矢量图显示,在盲通 43: 438–448. doi: 10.1016/j.jlp.2016.07.008.
管与弯管的交汇处,流体经盲通管壁面引流,并在下 [ 4 ] Yang Sheng, Xiao Zhenyu, Deng Chengwei, et al. Techno-economic
analysis of coal-to-liquid processes with different gasifier
游流体的挤压作用下,形成了狭长的涡流区,颗粒撞
alternatives[J]. Journal of Cleaner Production, 2020, 253: 120006.
击时间和次数增加,因此颗粒在流体的携带作用下对
doi: 10.1016/j.jclepro.2020.120006.
此处的管道造成严重的冲蚀.
[ 5 ] Wang Hongli. Discussion on the basic national conditions of China's
进一步将盲通管结构优化为R=375 mm(1.5D)涡 coal resources[J]. Chemical Enterprise Management, 2019, 26: 9–9
室结构,如图11(b)所示. 结果显示,涡室结构在一定程 (in Chinese) [王红丽. 浅谈中国煤炭资源基本国情[J]. 化工管理,
度上改善了弯管的冲蚀情形,最大冲蚀率为5.8× 2019, 26: 9–9]. doi: 10.3969/j.issn.1008-4800.2019.26.006.
−9
2
10 kg/(m ·s),小于弯管结构的7.94×10 kg/(m ·s). 同 [ 6 ] Zahedi Peyman, Parsi Mazdak, Asgharpour Alireza, et al.
2
−9
时速度矢量图显示,流体绕涡室内形成了非常稳定的 Experimental investigation of sand particle erosion in a 90° elbow in
annular two-phase flows[J]. Wear, 2019, 438-439: 203048. doi:
涡流,反弹回来的流体与下游的流体碰撞减缓了流体
10.1016/j.wear.2019.203048.
的冲势,而没有形成小而急促的涡流,同时携带的颗
[ 7 ] Du Mingchao, Li Zengliang, Dong Xiangwei, et al. Analysis of
粒与下游的颗粒之间的碰撞抵消了一部分动能,很好
material surface erosion characteristics due to rhomboid-shaped
地利用回流减缓颗粒对管壁的冲蚀. particle impact, 2018, 38(5): 501-511(in Chinese) [杜明超, 李增亮,
董祥伟, 等. 菱形颗粒冲蚀磨损特性试验及仿真研究[J]. 摩擦学学
3 结论
报, 2018, 38(5): 501-511].
a. 管道的冲蚀磨损与其流体运动和颗粒冲击行 [ 8 ] Lu Yong, Tong Zhenbo, Glass Donald H, et al. Experimental and
numerical study of particle velocity distribution in the vertical pipe
为有关,该管线的严重冲蚀区域位于7号和9号弯管外
after a 90° elbow[J]. Powder Technology, 2017, 314: 500–509. doi:
拱处以及5号变径管的结构突变位置,其中7号弯管的
10.1016/j.powtec.2016.11.050.
冲蚀磨损最为严重,其流体冲击角度在10°~30°范围
[ 9 ] Zhu Hongjun, Qi Yuhang. Numerical investigation of flow erosion
内,管道壁面主要发生切削式冲蚀磨损. of sand-laden oil flow in a U-bend[J]. Process Safety and
b. 管道冲蚀磨损程度与流体速度成正比关系,但 Environmental Protection, 2019, 131: 16–27. doi: 10.1016/j.psep.
颗粒粒径对弯管最大冲蚀率的影响非单调关系,而变 2019.08.033.
径管的最大冲蚀率随粒径增加呈下降趋势,但冲蚀严 [10] Elemuren Raheem, Tamsaki Asawo, Evitts Richard, et al. Erosion-
corrosion of 90° AISI 1018 steel elbows in potash slurry: Effect of
重区域扩大.
particle concentration on surface roughness[J]. Wear, 2019, 430-
c. 仿真分析了盲通弯管和涡室弯管结构的冲蚀
431: 37–49. doi: 10.1016/j.wear.2019.04.014.
磨损行为. 与相同特征的弯管相比,盲通弯管的最大
[11] Q Mazumder, S A Shirazi, B S McLaury. Experimental investigation
冲蚀率增加,而涡室结构弯管的最大冲蚀率降低. 涡 of the location of maximum erosive wear damage in elbows[J]. Press
室弯管可以形成非常稳定的回流,回流流体与刚进入 Vessel Technol, 2008, 30, 011303: 37–49.
弯管区的流体碰撞减缓了流体的冲势,抵消一部分撞 [12] Vieira Ronald E, Parsi Mazdak, Zahedi Peyman, et al. Sand erosion
击能量,减缓了颗粒对管壁的冲蚀磨损. measurements under multiphase annular flow conditions in a
horizontal-horizontal elbow[J]. Powder Technology, 2017, 320:
参 考 文 献
625–636. doi: 10.1016/j.powtec.2017.07.087.
[ 1 ] Al-Zareer Maan, Dincer Ibrahim, Rosen Marc A. Production of [13] Agrawal Madhusuden, Khanna Samir, Kopliku Ardjan, et al.
hydrogen-rich syngas from novel processes for gasification of Prediction of sand erosion in CFD with dynamically deforming pipe
petroleum cokes and coals[J]. International Journal of Hydrogen geometry and implementing proper treatment of turbulence
Energy, 2019. dispersion in particle tracking[J]. Wear, 2019, 426-427: 596–604.
[ 2 ] Chen Jianjun, Yang Siyu, Qian Yu. A novel path for carbon-rich doi: 10.1016/j.wear.2019.01.018.
resource utilization with lower emission and higher efficiency: An [14] Laín S, Sommerfeld M. Numerical prediction of particle erosion of
integrated process of coal gasification and coking to methanol pipe bends[J]. Advanced Powder Technology, 2019, 30(2):
production[J]. Energy, 2019, 177: 304–318. doi: 10.1016/j.energy. 366–383. doi: 10.1016/j.apt.2018.11.014.
2019.03.161. [15] Yu Wenchao, Fede Pascal, Climent Eric, et al. Multi-fluid approach
[ 3 ] Zhang Jixin, Kang Jian, Fan Jianchun, et al. Research on erosion for the numerical prediction of wall erosion in an elbow[J]. Powder
wear of high-pressure pipes during hydraulic fracturing slurry Technology, 2019, 354: 561–583. doi: 10.1016/j.powtec.2019.06.
flow[J]. Journal of Loss Prevention in the Process Industries, 2016, 007.