Page 50 - 《摩擦学学报》2020年第6期
P. 50

第 6 期                     乔小溪, 等: 固-液两相流黑水管道冲蚀磨损的数值模拟研究                                      733

            与弯管相比其值增加. 同时速度矢量图显示,在盲通                               43: 438–448. doi: 10.1016/j.jlp.2016.07.008.
            管与弯管的交汇处,流体经盲通管壁面引流,并在下                            [  4  ]  Yang Sheng, Xiao Zhenyu, Deng Chengwei, et al. Techno-economic
                                                                   analysis  of  coal-to-liquid  processes  with  different  gasifier
            游流体的挤压作用下,形成了狭长的涡流区,颗粒撞
                                                                   alternatives[J].  Journal  of  Cleaner  Production,  2020,  253:  120006.
            击时间和次数增加,因此颗粒在流体的携带作用下对
                                                                   doi: 10.1016/j.jclepro.2020.120006.
            此处的管道造成严重的冲蚀.
                                                               [  5  ]  Wang Hongli. Discussion on the basic national conditions of China's
                进一步将盲通管结构优化为R=375 mm(1.5D)涡                        coal resources[J]. Chemical Enterprise Management, 2019, 26: 9–9
            室结构,如图11(b)所示. 结果显示,涡室结构在一定程                           (in Chinese) [王红丽. 浅谈中国煤炭资源基本国情[J]. 化工管理,

            度上改善了弯管的冲蚀情形,最大冲蚀率为5.8×                                2019, 26: 9–9]. doi: 10.3969/j.issn.1008-4800.2019.26.006.
                                              −9
                                                    2
            10  kg/(m ·s),小于弯管结构的7.94×10  kg/(m ·s). 同         [  6  ]  Zahedi  Peyman,  Parsi  Mazdak,  Asgharpour  Alireza,  et  al.
                     2
              −9
            时速度矢量图显示,流体绕涡室内形成了非常稳定的                                Experimental investigation of sand particle erosion in a 90° elbow in
                                                                   annular  two-phase  flows[J].  Wear,  2019,  438-439:  203048.  doi:
            涡流,反弹回来的流体与下游的流体碰撞减缓了流体
                                                                   10.1016/j.wear.2019.203048.
            的冲势,而没有形成小而急促的涡流,同时携带的颗
                                                               [  7  ]  Du  Mingchao,  Li  Zengliang,  Dong  Xiangwei,  et  al.  Analysis  of
            粒与下游的颗粒之间的碰撞抵消了一部分动能,很好
                                                                   material  surface  erosion  characteristics  due  to  rhomboid-shaped
            地利用回流减缓颗粒对管壁的冲蚀.                                       particle impact, 2018, 38(5): 501-511(in Chinese) [杜明超, 李增亮,
                                                                   董祥伟, 等. 菱形颗粒冲蚀磨损特性试验及仿真研究[J]. 摩擦学学
            3    结论
                                                                   报, 2018, 38(5): 501-511].
                a. 管道的冲蚀磨损与其流体运动和颗粒冲击行                         [  8  ]  Lu  Yong,  Tong  Zhenbo,  Glass  Donald  H,  et  al.  Experimental  and
                                                                   numerical study of particle velocity distribution in the vertical pipe
            为有关,该管线的严重冲蚀区域位于7号和9号弯管外
                                                                   after a 90° elbow[J]. Powder Technology, 2017, 314: 500–509. doi:
            拱处以及5号变径管的结构突变位置,其中7号弯管的
                                                                   10.1016/j.powtec.2016.11.050.
            冲蚀磨损最为严重,其流体冲击角度在10°~30°范围
                                                               [  9  ]  Zhu Hongjun, Qi Yuhang. Numerical investigation of flow erosion
            内,管道壁面主要发生切削式冲蚀磨损.                                     of  sand-laden  oil  flow  in  a  U-bend[J].  Process  Safety  and
                b. 管道冲蚀磨损程度与流体速度成正比关系,但                            Environmental  Protection,  2019,  131:  16–27.  doi:  10.1016/j.psep.
            颗粒粒径对弯管最大冲蚀率的影响非单调关系,而变                                2019.08.033.
            径管的最大冲蚀率随粒径增加呈下降趋势,但冲蚀严                            [10]  Elemuren Raheem, Tamsaki Asawo, Evitts Richard, et al. Erosion-
                                                                   corrosion of 90° AISI 1018 steel elbows in potash slurry: Effect of
            重区域扩大.
                                                                   particle  concentration  on  surface  roughness[J].  Wear,  2019,  430-
                c. 仿真分析了盲通弯管和涡室弯管结构的冲蚀
                                                                   431: 37–49. doi: 10.1016/j.wear.2019.04.014.
            磨损行为. 与相同特征的弯管相比,盲通弯管的最大
                                                               [11]  Q Mazumder, S A Shirazi, B S McLaury. Experimental investigation
            冲蚀率增加,而涡室结构弯管的最大冲蚀率降低. 涡                               of the location of maximum erosive wear damage in elbows[J]. Press
            室弯管可以形成非常稳定的回流,回流流体与刚进入                                Vessel Technol, 2008, 30, 011303: 37–49.
            弯管区的流体碰撞减缓了流体的冲势,抵消一部分撞                            [12]  Vieira Ronald E, Parsi Mazdak, Zahedi Peyman, et al. Sand erosion

            击能量,减缓了颗粒对管壁的冲蚀磨损.                                     measurements  under  multiphase  annular  flow  conditions  in  a
                                                                   horizontal-horizontal  elbow[J].  Powder  Technology,  2017,  320:
            参 考 文 献
                                                                   625–636. doi: 10.1016/j.powtec.2017.07.087.
            [  1  ]  Al-Zareer  Maan,  Dincer  Ibrahim,  Rosen  Marc  A.  Production  of  [13]  Agrawal  Madhusuden,  Khanna  Samir,  Kopliku  Ardjan,  et  al.
                 hydrogen-rich  syngas  from  novel  processes  for  gasification  of  Prediction of sand erosion in CFD with dynamically deforming pipe
                 petroleum  cokes  and  coals[J].  International  Journal  of  Hydrogen  geometry  and  implementing  proper  treatment  of  turbulence
                 Energy, 2019.                                     dispersion  in  particle  tracking[J].  Wear,  2019,  426-427:  596–604.
            [  2  ]  Chen  Jianjun,  Yang  Siyu,  Qian  Yu.  A  novel  path  for  carbon-rich  doi: 10.1016/j.wear.2019.01.018.
                 resource utilization with lower emission and higher efficiency: An  [14]  Laín S, Sommerfeld M. Numerical prediction of particle erosion of
                 integrated  process  of  coal  gasification  and  coking  to  methanol  pipe  bends[J].  Advanced  Powder  Technology,  2019,  30(2):
                 production[J].  Energy,  2019,  177:  304–318.  doi:  10.1016/j.energy.  366–383. doi: 10.1016/j.apt.2018.11.014.
                 2019.03.161.                                  [15]  Yu Wenchao, Fede Pascal, Climent Eric, et al. Multi-fluid approach
            [  3  ]  Zhang  Jixin,  Kang  Jian,  Fan  Jianchun,  et  al.  Research  on  erosion  for the numerical prediction of wall erosion in an elbow[J]. Powder
                 wear  of  high-pressure  pipes  during  hydraulic  fracturing  slurry  Technology,  2019,  354:  561–583.  doi:  10.1016/j.powtec.2019.06.
                 flow[J]. Journal of Loss Prevention in the Process Industries, 2016,  007.
   45   46   47   48   49   50   51   52   53   54   55