Page 119 - 《摩擦学学报》2020年第4期
P. 119
第 4 期 袁才钦, 等: 铁路车轴过盈配合面微动损伤分析及有限元仿真 529
y Contact edge y
S, mises x S, mises x Contact edge
(Avg:75%) z (Avg:75%) z
+3.812e+02 +4.457e+02
+3.525e+02 +4.198e+02
+3.238e+02 +3.850e+02
+2.951e+02 +3.502e+02
+2.664e+02 +3.154e+02
+2.378e+02 +2.806e+02
+2.091e+02 +2.457e+02
+1.804e+02 +2.109e+02
+1.517e+02 +1.761e+02
+1.230e+02 +1.413e+02
+9.432e+01 +1.064e+02
+6.563e+01 +7.162e+01
+3.694e+01 +3.680e+01
(a) With debris (b) Without debris
Fig. 19 Von-Mises stress distribution with or without debris
图 19 考虑磨屑、不考虑磨屑时von Mises应力云图
4 结论 2018, 84: 151–166. doi: 10.1016/j.engfailanal.2017.06.054.
[ 7 ] Zhu C F, He J F, Peng J F, et al. Failure mechanism analysis on
a. 过盈配合表面损伤可分为3个区域,I区损伤严
railway wheel shaft of power locomotive[J]. Engineering Failure
重,损伤机理为磨粒磨损;II区损伤较轻,表面有黑色 Analysis, 2019, 104: 25–38. doi: 10.1016/j.engfailanal.2019.05.013.
和红色磨屑,损伤机理为磨粒磨损、剥层和氧化磨损; [ 8 ] Cervello S. Fatigue properties of railway axles: New results of full-
III区损伤轻微,损伤机理为剥层和氧化磨损; scale specimens from Euraxles project[J]. International Journal of
b. 微动损伤区宽度与轮轴滑移区基本一致,磨损 Fatigue, 2016, 86: 2–12. doi: 10.1016/j.ijfatigue.2015.11.028.
[ 9 ] Yang Guangxue, Xie Jilong, Li Qiang, et al. Key parameters of
发生在张开区. 随着磨损的进行,微动区几何形貌改
fretting damage under shrink fit[J]. Journal of Mechanical
变,接触参量发生重分布,应力集中位置由接触边缘
Engineering, 2010, 46(16): 53–59 (in Chinese) [杨广雪, 谢基龙, 李
转移至磨损-未磨损边界. 强, 等. 过盈配合微动损伤的关键参数[J]. 机械工程学报, 2010,
c. 磨屑在高压作用下形成新的表面,缓解了微动 46(16): 53–59]. doi: 10.3901/JME.2010.16.053.
磨损,并阻止应力集中向接触区内部移动. [10] Lee D H, Kwon S J, Choi J B, Kim Y J. Observations of fatigue
damage in the press-fitted shaft under bending loads[J]. Key
参 考 文 献
Engineering Materials, 2006, 326-328: 1071–1074. doi:
[ 1 ] Zhou Zhongrong. On fretting wear and fretting fatigue[J]. China 10.4028/www.scientific.net/KEM.326-328.1071.
Mechanical Engineering, 2000, 11(10): 1146–1150 (in Chinese) [周 [11] Lee D H, Kwon S J, You W H. Characteristics of fretting wear in a
仲荣. 关于微动磨损与微动疲劳的研究[J]. 中国机械工程, 2000, press-fitted shaft subjected to bending load[J]. Advanced Materials
11(10): 1146–1150]. doi: 10.3321/j.issn:1004-132X.2000.10.022. Research, 2010, 97-101: 1269–1272. doi: 10.4028/www.scientific.
[ 2 ] Alfredsson B. Fretting fatigue of a shrink-fit pin subjected to net/AMR.97-101.1269.
rotating bending: Experiments and simulations[J]. International [12] Zhang Yuanbin, Lu Liantao, Zeng Dongfang, et al. Influence of
Journal of Fatigue, 2009, 31: 1559–1570. doi: 10.1016/j.ijfatigue. fretting wear on fretting parameters in press-fitted shaft[J].
2009.04.019. Tribology, 2015, 35(4): 485–494 (in Chinese) [张远彬, 鲁连涛, 曾
[ 3 ] Zhang Y B, Lu L T, Gong Y B, et al. Finite element modeling and 东方, 等. 微动磨损对过盈配合结构微动参量的影响[J]. 摩擦学学
experimental validation of fretting wear scars in a press-fitted shaft 报, 2015, 35(4): 485–494].
with an open zone[J]. Tribology Transactions, 2018, 61: 585–595. [13] TB/T 1463-2015. Technical specification for wheelsets assembly of
doi: 10.1080/10402004.2017.1378395. locomotive[S].Beijing: China Railway Science Publication, 2015(in
[ 4 ] Zhang Y B, Lu L T, Gong Y B, et al. Fretting wear-induced Chinese) [TB/T 1463-2015. 南车戚墅堰机车车辆工艺研究所.机车
evolution of surface damage in press-fitted shaft[J]. Wear, 2017, 轮对组装技术条件[S].北京:中国铁道科学出版社, 2015].
384-385: 131–141. doi: 10.1016/j.wear.2017.05.014. [14] Zhou Suxia, Xie Jilong, Zhao Fang, et al. Experimental analysis on
[ 5 ] Song C, Shen M X, Lin X F, et al. An investigation on rotatory the stress spectrum of EMU axle based on probability distribution
bending fretting fatigue damage of railway axles[J]. Fatigue & function[J]. China Railway Science, 2013, 34(2): 95–99 (in Chinese)
Fracture of Engineering Materials & Structures, 2014, 37: 72–84. [周素霞, 谢基龙, 赵方, 等. 基于概率分布函数的动车组车轴应力
[ 6 ] Gürer G, Gür C H. Failure analysis of fretting fatigue initiation and 谱 试 验 分 析 [J]. 中 国 铁 道 科 学 , 2013, 34(2): 95–99]. doi:
growth on railway axle press-fits[J]. Engineering Failure Analysis, 10.3969/j.issn.1001-4632.2013.02.16.