Page 121 - 《摩擦学学报》2020年第4期
P. 121

第 40 卷     第 4 期                        摩  擦  学  学  报                                  Vol 40   No 4
            2020  年 7  月                                 Tribology                                    Jul, 2020

            DOI: 10.16078/j.tribology.2019238



                     考虑上游泵送效应的滑靴副动压润滑特性




                                             1
                                                      1
                                                                        1
                                                               2
                                       赵  波 , 王志超 , 杨理华 , 刘晓俊 , 张保成              1*
                                      (1. 中国海洋大学工程学院 机电工程系,山东 青岛 266000;
                                            2. 海军潜艇学院 动力系,山东 青岛 266199)
                摘   要: 为了改善轴向柱塞泵滑靴副的润滑性能,利用仿生学原理,在斜盘上构建倾斜椭圆形微坑织构. 通过微坑产
                生的动压效应和上游泵送效应,以期能够优化滑靴副的摩擦性能并减少泄漏量. 基于CFD方法开展了具有椭圆形微
                坑织构滑靴副的建模与润滑性能研究,揭示了不同润滑介质黏度和转速下柱塞泵滑靴副的承载能力、泄漏量和摩
                擦系数随微坑倾斜角度的变化规律. 研究结果表明:通过在斜盘面上建立无倾斜椭圆形微坑,能明显提高滑靴副的
                承载能力,并降低摩擦系数,但会导致泄漏量增大;而在此基础上,通过将椭圆形微坑相对于其滑动方向旋转一定
                角度,滑靴副的承载能力和摩擦系数不会明显变化,但可以显著减小润滑介质泄漏量.
                关键词: 滑靴副; 上游泵送; 流体动压润滑; 织构; 倾斜椭圆微坑
                中图分类号: TH117.3                  文献标志码: A                   文章编号: 1004-0595(2020)04–0531–07



                 Dynamic Pressure Lubrication Characteristics of Slipper/Swash
                           Plate Pair Considering Upstream Pumping Effect


                                   1              1             2           1                 1*
                          ZHAO Bo , WANG Zhichao , YANG Lihua , LIU Xiaojun , ZHANG Baocheng

                            (1. Department of Mechatronic Engineering, College of Engineering, Ocean University of
                                             China, Shandong Qingdao 266000, China
                           2. Power Control Department, Navy Submarine Academy, Shandong Qingdao 266199, China)
                 Abstract: In order to improve the lubrication performance of the slipper/swash plate pair on axial piston pump, the
                 elliptical micro-pits texture was constructed on the swash plate based on the bionics principle. The effect of dynamic
                 pressure and upstream pumping were generated by the elliptical micro-pits, and it can be used to optimize the friction
                 performance of the slipper/swash plate pair and reduce the leakage. Based on the CFD method, the modeling and
                 lubrication performance of the slipper/swash plate pair were carried out with the elliptical micro-pit texture. It was
                 revealed that the carrying capacity, leakage and friction coefficient of the slipper/swash plate pair changed with variation
                 of the tilt angle of micro-pit under different speed and different viscosity of the lubricant. The results showed that the
                 carrying capacity of the slipper/swash plate pair was significantly improved, and the friction coefficient decreased, but
                 the leakage increased after establishing a non-inclined elliptical micro-pit on the swash plate. Spinning a certain angle
                 with respect to its sliding direction reduced the amount of leakage mostly while the carrying capacity and friction
                 coefficient of the slipper/swash plate pair remained stable.
                 Key words: slipper/swash-plate pair; upstream pumping; fluid dynamic lubrication; texture; inclined-ellipse-dimple




            Received 27 November 2019, revised 18 February 2020, accepted 28 February 2020, available online 28 July 2020.
            *Corresponding author. E-mail: zbc2014088@ouc.edu.cn, E-mail: zhaobo@ouc.edu.cn, Tel: +86-17863968689.
            This project was supported by the National Natural Science Foundation of China (51909254), Fundamental Research Funds for the
            Central Universities (201965006, 201912006) and Qingdao Pioneering and Innovation Leading Talent Program (18-1-2-20-zhc).
            国家自然科学基金(51909254),中央高校基础研究基金(201965006, 201912006)和青岛市创业创新领军人才计划项目(18-1-2-
            20-zhc)资助.
   116   117   118   119   120   121   122   123   124   125   126