Page 36 - 《高原气象》2023年第1期
P. 36

高     原      气     象                                 42 卷
              32
             变化特征。主要结论如下:                                       Gao Y H, Li K, Chen F, et al, 2015. Assessing and improving Noah-
                 (1)  地表感热强的区域集中在高原的西部和                            MP  land  model  simulations  for  the  central  Tibetan  Plateau[J].
                                                                   Journal of Geophys Research: Atmospher, 120. DOI: 10. 1002/
             中部, 西南的阿里地区和南部的日喀则市部分区域
                                                                   2015JD023404.
             达到 50 W·m 以上。高原东部区域感热通量较弱,
                         -2
                                                                Guo D L, Wang H J, 2013. Simulation of permafrost and seasonally
                                     -2
             大部分区域在 20~40 W·m 。高原整体年平均感热                           frozen  ground  conditions  on  the  Tibetan  Plateau[J]. Journal  of
                               -2
             通量为 39. 94 W·m 。高原中、 西部的感热通量年                         Geophys  Research:  Atmospher,  118:  5216-5230. DOI:  10.
             际差异较大, 高原东部的感热通量年际变率较小。                               1002/jgrd. 50457.
             绝大部分区域的感热通量是有增强趋势的。平均                              Guo X F, Yang K, Chen Y Y, 2011. Weakening sensible heat source
             而言, 感热通量从 2002 年前后呈较明显的增强趋                            over the Tibetan Plateau revisited: effects of the land-atmosphere
                                                                   thermal coupling[J]. Theoretical and Applied Climatology, 104
             势。高原平均的春季和夏季平均感热较强, 50~60
                                                                  (1): 1-12. DOI: 10. 1007/s00704-010-0328-1.
             W·m , 而秋季和冬季相对较弱。总体上, 四个季
                  -2
                                                                Han C B, Ma Y M, Chen X L, 2017. Trends of land surface heat flux‐
             节的平均感热都有较明显的增强, 特别是在 2010                             es  on  the  Tibetan  Plateau  from  2001  to  2012[J]. International
             年以后。                                                  Journal  of  Climatology,  37:  4757-4767. DOI:  10. 1002/joc.
                 (2)  高原东部区域为潜热通量较强区域, 而西                          5119.
             部区域整体较弱, 尤其是在高原西北区域。高原整                            He J, Yang K, Tang W J, et al, 2020. The first high-resolution meteo‐
                                           -2
             体年平均潜热通量为 24. 95 W·m 。高原的潜热通                          rological forcing dataset for land process studies over China[J].
                                                                   Scientific Data, 7: 25. DOI: 10. 1038/s41597-020-0369-y.
             量年际变率也是东部地区小于中、 西部地区, 且总
                                                                Shi Q, Liang S, 2014. Surface sensible and latent heat fuxes over the
             体上低于感热通量的变率。在高原的中部区域, 潜
                                                                   Tibetan Plateau from ground measurements, reanalysis, and sat‐
             热通量呈减弱趋势。在高原西部和东部, 潜热通量                               ellite  data[J]. Atmospheric  Chemistry  and  Physics,  14:  5659-
             都有弱的增强趋势。平均而言, 2000 -2003 年, 潜                        5677. DOI: 10. 5194/acp-14-5659-2014.
             热通量是增加的, 2003 年之后有减弱, 特别是在                         Ma Y M, Wang B B, Zhong L, et al, 2012. The regional surface heat‐
             2009 年和 2015 年。但 2016 年又有明显的增强, 所                     ing field over the heterogeneous landscape of the Tibetan Plateau
                                                                   using MODIS and in-situ data[J]. Advance in Atmospheric Sci‐
             以年平均整体潜热通量变化趋势并不明显。夏季
                                                                   ences, 29: 47-53. DOI: 10. 1007/s00376-011-1008-5.
             潜热通量在 2003 -2015年的减弱是较明显的, 很大
                                                                Niu G Y, Yang Z L, Mitchell K E, et al, 2011. The community Noah
             程度上影响潜热通量的年际变化趋势。
                                                                   land  surface  model  with  multiparameterization  options (Noah-
             参考文献:                                                 MP): 1. Model description and evaluation with local-scale mea‐
                                                                   surements[J]. Journal of Geophysical Research, 116, D12109.
             Chen L, Pryor S C, Wang H, et al, 2019. Distribution and variation   DOI: 10. 1029/2010JD015139.
                 of the surface sensible heat flux over the central and eastern Tibet‐  Wang  S  Z,  Ma Y  M,  2019. On  the  simulation  of  sensible  heat  flux
                 an Plateau: Comparison on of station observations and multi-re‐  over the Tibetan Plateau using different thermal roughness length
                 analysis products[J]. Journal of Geophys Research: Atmospher,   parameterization schemes[J]. Theoretical and Applied Climatolo‐
                 124: 6191-6206. DOI: 10. 1029/2018JD030069.       gy, 137: 1883-1893. DOI: 10. 1007/s00704-018-2704-1.
             Chen L X, Reiter E R, Feng Z, 1985. The atmospheric heat source   Yang K, Wu H, Qin J, et al, 2014. Recent climate changes over the
                 over the Tibetan Plateau: May-August 1979[J]. Monthly Weath‐  Tibetan  Plateau  and  their  impacts  on  energy  and  water  cycle:  a
                 er  Review,  113:  1771-1790. DOI:  10. 1175/1520-0493(1985)  review[J]. Global Planet Change, 112: 79-91. DOI: 10. 1016/j.
                 113<1771: TAHSOT>2. 0. CO; 2.                     gloplacha. 2013. 12. 001.
             Chen Y Y, Yang K, He J, et al, 2011. Improving land surface temper‐  Yang Z L, Niu G Y, Mitchell K E, et al, 2011. The community Noah
                 ature modeling for dry land of China[J]. Journal of Geophys Re‐  land surface model with multiple parameterization options (Noah-
                 searchs, 116: D20104. DOI: 10. 1029/2011JD015921.  MP): 2. Evaluation over global river basins[J]. Journal of Geo‐
             Duan A M, Wu G X, 2008. Weakening trend in the atmospheric heat   physical Research, 116, D12110. DOI: 10. 1029/2010JD015140.
                 source over the Tibetan Plateau during recent decades. Part I:  Ob‐  Zeng X B, Dickinson R E, 1998. Effect of surface sublayer on surface
                 servations[J]. Journal  of  Climate,  21(13):  3149-3164. DOI:   skin  temperature  and  fluxes[J]. Journal  of  Climate,  11:  537-
                 10. 1175/2009JCLI2699. 1.                         550. DOI:  10. 1175/1520-0442(1998)011<0537:  EOSSOS>
             Duan A M, Sun R Z, He J H, 2017. Impact of surface sensible heat‐  2. 0. CO; 2.
                 ing  over  the  Tibetan  Plateau  on  the  western  Pacific  subtropical   Zhang  G,  Chen  F,  Chen Y  L,  et  al,  2020. Evaluation  of  Noah-MP
                 high: A land-air-sea interaction perspective[J]. Advance in Atmo‐  Land-Model uncertainties over sparsely vegetated sites on the Ti‐
                 spheric  Sciences,  34(2):  157-168. DOI:  https: //doi. org/  bet  Plateau[J]. Atmosphere,  11(5):  458. DOI:  10. 3390/at‐
                 10. 1007/s00376-016-6008-z.                       mos11050458.
   31   32   33   34   35   36   37   38   39   40   41