Page 36 - 《高原气象》2023年第1期
P. 36
高 原 气 象 42 卷
32
变化特征。主要结论如下: Gao Y H, Li K, Chen F, et al, 2015. Assessing and improving Noah-
(1) 地表感热强的区域集中在高原的西部和 MP land model simulations for the central Tibetan Plateau[J].
Journal of Geophys Research: Atmospher, 120. DOI: 10. 1002/
中部, 西南的阿里地区和南部的日喀则市部分区域
2015JD023404.
达到 50 W·m 以上。高原东部区域感热通量较弱,
-2
Guo D L, Wang H J, 2013. Simulation of permafrost and seasonally
-2
大部分区域在 20~40 W·m 。高原整体年平均感热 frozen ground conditions on the Tibetan Plateau[J]. Journal of
-2
通量为 39. 94 W·m 。高原中、 西部的感热通量年 Geophys Research: Atmospher, 118: 5216-5230. DOI: 10.
际差异较大, 高原东部的感热通量年际变率较小。 1002/jgrd. 50457.
绝大部分区域的感热通量是有增强趋势的。平均 Guo X F, Yang K, Chen Y Y, 2011. Weakening sensible heat source
而言, 感热通量从 2002 年前后呈较明显的增强趋 over the Tibetan Plateau revisited: effects of the land-atmosphere
thermal coupling[J]. Theoretical and Applied Climatology, 104
势。高原平均的春季和夏季平均感热较强, 50~60
(1): 1-12. DOI: 10. 1007/s00704-010-0328-1.
W·m , 而秋季和冬季相对较弱。总体上, 四个季
-2
Han C B, Ma Y M, Chen X L, 2017. Trends of land surface heat flux‐
节的平均感热都有较明显的增强, 特别是在 2010 es on the Tibetan Plateau from 2001 to 2012[J]. International
年以后。 Journal of Climatology, 37: 4757-4767. DOI: 10. 1002/joc.
(2) 高原东部区域为潜热通量较强区域, 而西 5119.
部区域整体较弱, 尤其是在高原西北区域。高原整 He J, Yang K, Tang W J, et al, 2020. The first high-resolution meteo‐
-2
体年平均潜热通量为 24. 95 W·m 。高原的潜热通 rological forcing dataset for land process studies over China[J].
Scientific Data, 7: 25. DOI: 10. 1038/s41597-020-0369-y.
量年际变率也是东部地区小于中、 西部地区, 且总
Shi Q, Liang S, 2014. Surface sensible and latent heat fuxes over the
体上低于感热通量的变率。在高原的中部区域, 潜
Tibetan Plateau from ground measurements, reanalysis, and sat‐
热通量呈减弱趋势。在高原西部和东部, 潜热通量 ellite data[J]. Atmospheric Chemistry and Physics, 14: 5659-
都有弱的增强趋势。平均而言, 2000 -2003 年, 潜 5677. DOI: 10. 5194/acp-14-5659-2014.
热通量是增加的, 2003 年之后有减弱, 特别是在 Ma Y M, Wang B B, Zhong L, et al, 2012. The regional surface heat‐
2009 年和 2015 年。但 2016 年又有明显的增强, 所 ing field over the heterogeneous landscape of the Tibetan Plateau
using MODIS and in-situ data[J]. Advance in Atmospheric Sci‐
以年平均整体潜热通量变化趋势并不明显。夏季
ences, 29: 47-53. DOI: 10. 1007/s00376-011-1008-5.
潜热通量在 2003 -2015年的减弱是较明显的, 很大
Niu G Y, Yang Z L, Mitchell K E, et al, 2011. The community Noah
程度上影响潜热通量的年际变化趋势。
land surface model with multiparameterization options (Noah-
参考文献: MP): 1. Model description and evaluation with local-scale mea‐
surements[J]. Journal of Geophysical Research, 116, D12109.
Chen L, Pryor S C, Wang H, et al, 2019. Distribution and variation DOI: 10. 1029/2010JD015139.
of the surface sensible heat flux over the central and eastern Tibet‐ Wang S Z, Ma Y M, 2019. On the simulation of sensible heat flux
an Plateau: Comparison on of station observations and multi-re‐ over the Tibetan Plateau using different thermal roughness length
analysis products[J]. Journal of Geophys Research: Atmospher, parameterization schemes[J]. Theoretical and Applied Climatolo‐
124: 6191-6206. DOI: 10. 1029/2018JD030069. gy, 137: 1883-1893. DOI: 10. 1007/s00704-018-2704-1.
Chen L X, Reiter E R, Feng Z, 1985. The atmospheric heat source Yang K, Wu H, Qin J, et al, 2014. Recent climate changes over the
over the Tibetan Plateau: May-August 1979[J]. Monthly Weath‐ Tibetan Plateau and their impacts on energy and water cycle: a
er Review, 113: 1771-1790. DOI: 10. 1175/1520-0493(1985) review[J]. Global Planet Change, 112: 79-91. DOI: 10. 1016/j.
113<1771: TAHSOT>2. 0. CO; 2. gloplacha. 2013. 12. 001.
Chen Y Y, Yang K, He J, et al, 2011. Improving land surface temper‐ Yang Z L, Niu G Y, Mitchell K E, et al, 2011. The community Noah
ature modeling for dry land of China[J]. Journal of Geophys Re‐ land surface model with multiple parameterization options (Noah-
searchs, 116: D20104. DOI: 10. 1029/2011JD015921. MP): 2. Evaluation over global river basins[J]. Journal of Geo‐
Duan A M, Wu G X, 2008. Weakening trend in the atmospheric heat physical Research, 116, D12110. DOI: 10. 1029/2010JD015140.
source over the Tibetan Plateau during recent decades. Part I: Ob‐ Zeng X B, Dickinson R E, 1998. Effect of surface sublayer on surface
servations[J]. Journal of Climate, 21(13): 3149-3164. DOI: skin temperature and fluxes[J]. Journal of Climate, 11: 537-
10. 1175/2009JCLI2699. 1. 550. DOI: 10. 1175/1520-0442(1998)011<0537: EOSSOS>
Duan A M, Sun R Z, He J H, 2017. Impact of surface sensible heat‐ 2. 0. CO; 2.
ing over the Tibetan Plateau on the western Pacific subtropical Zhang G, Chen F, Chen Y L, et al, 2020. Evaluation of Noah-MP
high: A land-air-sea interaction perspective[J]. Advance in Atmo‐ Land-Model uncertainties over sparsely vegetated sites on the Ti‐
spheric Sciences, 34(2): 157-168. DOI: https: //doi. org/ bet Plateau[J]. Atmosphere, 11(5): 458. DOI: 10. 3390/at‐
10. 1007/s00376-016-6008-z. mos11050458.