Page 79 - 《高原气象》2022年第5期
P. 79
高 原 气 象 41 卷
1172
(2) 贺兰山东麓暴雨过程的斜压性在中层 anisms for baroclinic growth[J]. Journal of the Atmospheric Sci‐
700~500 hPa 表现得最为明显,低层 875~700 hPa 次 ence,58(1):38-49.
Bluestein H B,Jain M H,1985. Formation of mesoscale lines of pre‐
之,高层 500~200 hPa 最弱。随着暴雨量级增大,
cipitation:Severe squall lines in Oklahoma during the spring[J].
斜压性减弱,其中,一般暴雨过程的斜压性最强,
Journal of the Atmospheric Science,42(16):1711-1732.
大暴雨过程次之,特大暴雨过程最弱。 Chahine M T,1992. The hydrological cycle and its influence on cli‐
(3) 一般暴雨过程以锋区降水为主,量级小、 mate[J]. Nature,359:373-380.
对流弱。过程期间,西风带锋面系统最强,高空急 Chen Y,Li Y,2021. Convective characteristics and formation condi‐
流最弱,副高和低空急流最弱最南,动力抬升强且 tions in an extreme rainstorm on the Eastern Edge of the Tibetan
Plateau[J]. Atmosphere,12(3):381.
深厚,湿层最厚,暖云层最薄,低层湿度和热力强
Chen Y Y,Li J P,Li X,et al,2021. Spatio-temporal distribution of
迫最弱,K 指数、SI、BLI 等对流参数绝对值最小,
the rainstorm in the east side of the Helan Mountain and the possi‐
大气层结不稳定最弱。 ble causes of its variability[J]. Atmospheric Research,252:
(4) 大暴雨过程以锋面对流降水和锋区层云 105469.
降水构成的混合性降水为主,时间长、范围广、量 Chen Y,Zhai P M,2014. Two types of typical circulation pattern for
persistent extreme precipitation in Central-Eastern China[J].
级较大、对流较强。过程期间,西风带锋面系统和
Quarterly Journal of the Royal Meteorological Society, 140
高空急流较强,副高和低空急流较强且偏北,动力
(682):1467-1478.
抬升最弱,低层湿度和热力强迫较强,虽然 CAPE、 Ding Y H,Reiter E R,1982. A relationship between planetary waves
高低层垂直风切变最小,但 K指数、SI、BLI等对流 and persistent rain-and thunderstorms in China[J]. Theoretical &
参数绝对值较大,大气层结不稳定较强。 Applied Climatology,31:221-252.
(5) 特大暴雨过程以暖区降水为主,时间最 Heifetz E,Bishop C H,Hoskins B J,et al,2004. The counter‐propa‐
gating Rossby‐wave perspective on baroclinic instability. I:math‐
短、范围最小、量级最大、对流最强。过程期间,
ematical basis[J]. Quarterly Journal of the Royal Meteorological
西风带锋面系统最弱,南亚高压、副高、高低空急
Society,130(596):211-231.
流最强最北,湿层最薄,暖云层最厚,低层湿度和 Hoskins B J,1982. The mathematical theory of frontogenesis[J]. An‐
热动力抬升最强,CAPE、K 指数、高低层垂直风切 nual review of fluid mechanics,14(1):131-151.
变和温差等对流参数绝对值最大,大气层结不稳定 Hoskins B J,Valdes P J,1990. On the existence of storm-tracks[J].
最强。 Journal of the Atmospheric Science,47(15):1854-1864.
Houze R A,2004. Mesoscale convective systems[J]. Reviews of Geo‐
由于贺兰山东麓处于西北干旱区,暴雨过程相
physics,42(4):RG4003.
对少,尤其是特大暴雨历史上仅有 2 次,暴雨中尺
Macqueen J B,1967. Some methods for classification and analysis of‐
度对流系统的触发和维持机制更为复杂,预报难度 multi variate observations[C]//Proc of Berkeley Symposiumon
加大。虽然通过对比分析得到了一些定性和定量 Mathematical Statistics and Probability,281-297.
的预报指标和概念模型,但限于篇幅,仅对大尺度 Mukhopadhyay P,Mahakur M,Singh H A K,2009. The interaction
of large scale and mesoscale environment leading to formation of
环流背景做了分析,没有对暴雨区附近精细的局地
intense thunderstorms over Kolkata Part I:Doppler radar and sat‐
环流特征展开研究,尤其是对暴雨中尺度对流系统
ellite observations[J]. Journal of Earth System Science,118(5):
没有深入研究,低空急流、锋面、地形等系统如何
441-466.
相互作用影响对流的触发机制尚不清楚。接下来, Parker M D,Johnson R H,2000. Organizational modes of midlatitude
将选取典型暴雨过程,利用高分辨率数值模拟和敏 mesoscale convective systems[J]. Monthly Weather Review,128
感性试验,深入研究贺兰山东麓不同量级暴雨过程 (10):3413-3436.
的局地环流特征,以及复杂地形处暴雨中尺度系统 Rotunno R,Klemp J B,Weisman M L,1988. A theory for strong,
longlived squall lines[J]. Journal of the Atmospheric Science,45
的触发、发展与消亡机制,进一步凝练出具有较高
(3):463−485.
业务应用价值的预报指标和概念模型,为干旱区暴 Schumacher R S,Johnson R H,2005. Organization and environmen‐
洪防灾减灾提供精准气象服务。 tal properties of extreme-rain-producing,mesoscale convective
systems[J]. Monthly Weather Review,133(4):961-976.
致谢:感谢南京飓风翻译提供的专业语言服务!
Shepherd M,Mote T,Dowd J,2011. An overview of synoptic and
参考文献: mesoscale factors contributing to the disastrous Atlanta flood of
2009[J]. Bulletin of the American Meteorological Society,92
Badger J,Hoskins B J,2001. Simple initial value problems and mech‐ (7):861-870.