Page 85 - 《爆炸与冲击》2025年第12期
P. 85

第 45 卷         王鸿立,等: 高铁接触网铜镁合金材料的率温耦合变形机理与本构参数                                第 12 期

                    pantograph-catenary system at the sliding speed of 350 km/h with electric current [J]. Wear, 2015, 332/333: 949–955. DOI:
                    10.1016/j.wear.2014.11.004.
               [10]   XU Z, SONG Y, LIU Z G. Stress analysis and fatigue life prediction of contact wire located at steady arms in high-speed
                    railway catenary system [J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 9001212. DOI: 10.1109/TIM.
                    2022.3144747.
               [11]   吴朋越, 谢水生, 黄国杰. 高速列车用铜合金接触线用材料及其加工工艺 [J]. 稀有金属, 2006, 30(2): 203–208. DOI:
                    10.13373/j.cnki.cjrm.2006.02.018.
                    WU P Y, XIE S S, HUANG G J. Materials and process technics of copper contact wires for high-speed train [J]. Chinese
                    Journal of Rare Metals, 2006, 30(2): 203–208. DOI: 10.13373/j.cnki.cjrm.2006.02.018.
               [12]   敬霖, 冯超, 苏兴亚, 等. 高速动车组   D2  车轮钢的率温耦合变形机理与本构关系 [J]. 科学通报, 2022, 67(34): 4068–4079.
                    DOI: 10.1360/TB-2022-0437.
                    JING L, FENG C, SU X Y, et al. Strain rate-temperature coupling deformation mechanism and constitutive relationship of D2
                    wheel steel for high-speed EMUs [J]. Chinese Science Bulletin, 2022, 67(34): 4068–4079. DOI: 10.1360/TB-2022-0437.
               [13]   ZHANG T, LU S H, WU Y X, et al. Optimization of deformation parameters of dynamic recrystallization for 7055 aluminum
                    alloy by cellular automaton [J]. Transactions of Nonferrous Metals Society of China, 2017, 27(6): 1327–1337. DOI: 10.1016/
                    S1003-6326(17)60154-7.
               [14]   PECZAK P, LUTON M J. A Monte Carlo study of the influence of dynamic recovery on dynamic recrystallization [J]. Acta
                    Metallurgica et Materialia, 1993, 41(1): 59–71. DOI: 10.1016/0956-7151(93)90339-T.
               [15]   DING  R,  GUO  Z  X.  Coupled  quantitative  simulation  of  microstructural  evolution  and  plastic  flow  during  dynamic
                    recrystallization [J]. Acta Metallurgica et Materialia, 2001, 49(16): 3163–3175. DOI: 10.1016/S1359-6454(01)00233-6.
               [16]   WEN  D  X,  LIN  Y  C,  LI  H  B,  et  al.  Hot  deformation  behavior  and  processing  map  of  a  typical  Ni-based  superalloy  [J].
                    Materials Science and Engineering: A, 2014, 591: 183–192. DOI: 10.1016/j.msea.2013.09.049.
               [17]   LIN Y C, CHEN X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot
                    working [J]. Materials & Design, 2011, 32(4): 1733–1759. DOI: 10.1016/j.matdes.2010.11.048.
               [18]   LIU Y H, NING Y Q, YANG X M, et al. Effect of temperature and strain rate on the workability of FGH4096 superalloy in
                    hot deformation [J]. Materials & Design, 2016, 95: 669–676. DOI: 10.1016/j.matdes.2016.01.032.
               [19]   LI J, WENG G J. A micromechanical approach to the stress-strain relations, strain-rate sensitivity and activation volume of
                    nanocrystalline  materials  [J].  International  Journal  of  Mechanics  and  Materials  in  Design,  2013,  9(2):  141–152.  DOI:
                    10.1007/s10999-013-9214-1.
               [20]   袁康博, 姚小虎, 王瑞丰, 等. 金属材料的率-温耦合响应与动态本构关系综述 [J]. 爆炸与冲击, 2022, 42(9): 091401. DOI:
                    10.11883/bzycj-2021-0416.
                    YUAN K B, YAO X H, WANG R F, et al. A review on rate-temperature coupling response and dynamic constitutive relation
                    of metallic materials [J]. Explosion and Shock Waves, 2022, 42(9): 091401. DOI: 10.11883/bzycj-2021-0416.
               [21]   LIU Y, ZHANG S, FENG C, et al. Dynamic mechanical behaviors of pearlitic U71MnG rail steel: deformation mechanisms
                    and constitutive model [J]. Materials Science and Engineering: A, 2024, 897: 146353. DOI: 10.1016/j.msea.2024.146353.
               [22]   申坤, 汪明朴, 郭明星, 等. Cu-0.23%Al 2 O 3 弥散强化铜合金的高温变形特性研究 [J]. 金属学报, 2009, 45(5): 597–604.
                    DOI: 10.3321/j.issn:0412-1961.2009.05.014.
                    SHEN K, WANG M P, GUO M X, et al. Study on high temperature deformation characteristics of Cu-0.23%Al 2 O 3  dispersion-
                    strengthened copper alloy [J]. Acta Metallurgica Sinica, 2009, 45(5): 597–604. DOI: 10.3321/j.issn:0412-1961.2009.05.014.
               [23]   SABIROV I, BARNETT M R, ESTRIN Y, et al. The effect of strain rate on the deformation mechanisms and the strain rate
                    sensitivity  of  an  ultra-fine-grained  Al  alloy  [J].  Scripta  Materialia,  2009,  61(2):  181–184.  DOI:  10.1016/j.scriptamat.2009.
                    03.032.
               [24]   JING L, SU X Y, ZHAO L M. The dynamic compressive behavior and constitutive modeling of D1 railway wheel steel over a
                    wide range of strain rates and temperatures [J]. Results in Physics, 2017, 7: 1452–1461. DOI: 10.1016/j.rinp.2017.04.015.
               [25]   LONG M J, JIANG F, SU Y M, et al. Dynamic recrystallization mechanisms and microstructure evolution of a novel Al-Zn-
                    Mg-Cu-Zr alloy by isothermal compression [J]. Journal of Materials Research and Technology, 2024, 33: 1740–1755. DOI:


                                                         123101-13
   80   81   82   83   84   85   86   87   88   89   90