Page 85 - 《爆炸与冲击》2025年第12期
P. 85
第 45 卷 王鸿立,等: 高铁接触网铜镁合金材料的率温耦合变形机理与本构参数 第 12 期
pantograph-catenary system at the sliding speed of 350 km/h with electric current [J]. Wear, 2015, 332/333: 949–955. DOI:
10.1016/j.wear.2014.11.004.
[10] XU Z, SONG Y, LIU Z G. Stress analysis and fatigue life prediction of contact wire located at steady arms in high-speed
railway catenary system [J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 9001212. DOI: 10.1109/TIM.
2022.3144747.
[11] 吴朋越, 谢水生, 黄国杰. 高速列车用铜合金接触线用材料及其加工工艺 [J]. 稀有金属, 2006, 30(2): 203–208. DOI:
10.13373/j.cnki.cjrm.2006.02.018.
WU P Y, XIE S S, HUANG G J. Materials and process technics of copper contact wires for high-speed train [J]. Chinese
Journal of Rare Metals, 2006, 30(2): 203–208. DOI: 10.13373/j.cnki.cjrm.2006.02.018.
[12] 敬霖, 冯超, 苏兴亚, 等. 高速动车组 D2 车轮钢的率温耦合变形机理与本构关系 [J]. 科学通报, 2022, 67(34): 4068–4079.
DOI: 10.1360/TB-2022-0437.
JING L, FENG C, SU X Y, et al. Strain rate-temperature coupling deformation mechanism and constitutive relationship of D2
wheel steel for high-speed EMUs [J]. Chinese Science Bulletin, 2022, 67(34): 4068–4079. DOI: 10.1360/TB-2022-0437.
[13] ZHANG T, LU S H, WU Y X, et al. Optimization of deformation parameters of dynamic recrystallization for 7055 aluminum
alloy by cellular automaton [J]. Transactions of Nonferrous Metals Society of China, 2017, 27(6): 1327–1337. DOI: 10.1016/
S1003-6326(17)60154-7.
[14] PECZAK P, LUTON M J. A Monte Carlo study of the influence of dynamic recovery on dynamic recrystallization [J]. Acta
Metallurgica et Materialia, 1993, 41(1): 59–71. DOI: 10.1016/0956-7151(93)90339-T.
[15] DING R, GUO Z X. Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic
recrystallization [J]. Acta Metallurgica et Materialia, 2001, 49(16): 3163–3175. DOI: 10.1016/S1359-6454(01)00233-6.
[16] WEN D X, LIN Y C, LI H B, et al. Hot deformation behavior and processing map of a typical Ni-based superalloy [J].
Materials Science and Engineering: A, 2014, 591: 183–192. DOI: 10.1016/j.msea.2013.09.049.
[17] LIN Y C, CHEN X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot
working [J]. Materials & Design, 2011, 32(4): 1733–1759. DOI: 10.1016/j.matdes.2010.11.048.
[18] LIU Y H, NING Y Q, YANG X M, et al. Effect of temperature and strain rate on the workability of FGH4096 superalloy in
hot deformation [J]. Materials & Design, 2016, 95: 669–676. DOI: 10.1016/j.matdes.2016.01.032.
[19] LI J, WENG G J. A micromechanical approach to the stress-strain relations, strain-rate sensitivity and activation volume of
nanocrystalline materials [J]. International Journal of Mechanics and Materials in Design, 2013, 9(2): 141–152. DOI:
10.1007/s10999-013-9214-1.
[20] 袁康博, 姚小虎, 王瑞丰, 等. 金属材料的率-温耦合响应与动态本构关系综述 [J]. 爆炸与冲击, 2022, 42(9): 091401. DOI:
10.11883/bzycj-2021-0416.
YUAN K B, YAO X H, WANG R F, et al. A review on rate-temperature coupling response and dynamic constitutive relation
of metallic materials [J]. Explosion and Shock Waves, 2022, 42(9): 091401. DOI: 10.11883/bzycj-2021-0416.
[21] LIU Y, ZHANG S, FENG C, et al. Dynamic mechanical behaviors of pearlitic U71MnG rail steel: deformation mechanisms
and constitutive model [J]. Materials Science and Engineering: A, 2024, 897: 146353. DOI: 10.1016/j.msea.2024.146353.
[22] 申坤, 汪明朴, 郭明星, 等. Cu-0.23%Al 2 O 3 弥散强化铜合金的高温变形特性研究 [J]. 金属学报, 2009, 45(5): 597–604.
DOI: 10.3321/j.issn:0412-1961.2009.05.014.
SHEN K, WANG M P, GUO M X, et al. Study on high temperature deformation characteristics of Cu-0.23%Al 2 O 3 dispersion-
strengthened copper alloy [J]. Acta Metallurgica Sinica, 2009, 45(5): 597–604. DOI: 10.3321/j.issn:0412-1961.2009.05.014.
[23] SABIROV I, BARNETT M R, ESTRIN Y, et al. The effect of strain rate on the deformation mechanisms and the strain rate
sensitivity of an ultra-fine-grained Al alloy [J]. Scripta Materialia, 2009, 61(2): 181–184. DOI: 10.1016/j.scriptamat.2009.
03.032.
[24] JING L, SU X Y, ZHAO L M. The dynamic compressive behavior and constitutive modeling of D1 railway wheel steel over a
wide range of strain rates and temperatures [J]. Results in Physics, 2017, 7: 1452–1461. DOI: 10.1016/j.rinp.2017.04.015.
[25] LONG M J, JIANG F, SU Y M, et al. Dynamic recrystallization mechanisms and microstructure evolution of a novel Al-Zn-
Mg-Cu-Zr alloy by isothermal compression [J]. Journal of Materials Research and Technology, 2024, 33: 1740–1755. DOI:
123101-13

