Page 41 - 《爆炸与冲击》2025年第12期
P. 41

第 45 卷                  张鸿宇,等: 颗粒靶体撞击溅射行为研究进展                                  第 12 期

               [117]   HERMALYN  B,  SCHULTZ  P  H,  SHIRLEY  M,  et  al.  Scouring  the  surface:  ejecta  dynamics  and  the  LCROSS  impact
                     event [J]. Icarus, 2012, 218(1): 654–665. DOI: 10.1016/j.icarus.2011.12.025.
               [118]   HERMALYN B, SCHULTZ P H. Time-resolved studies of hypervelocity vertical impacts into porous particulate targets:
                     effects of projectile density on early-time coupling and crater growth [J]. Icarus, 2011, 216(1): 269–279. DOI: 10.1016/j.
                     icarus.2011.09.008.
               [119]   MATSUE  K,  YASUI  M,  ARAKAWA  M,  et  al.  Measurements  of  seismic  waves  induced  by  high-velocity  impacts:
                     implications  for  seismic  shaking  surrounding  impact  craters  on  asteroids  [J].  Icarus,  2020,  338:  113520.  DOI:  10.1016/j.
                     icarus.2019.113520.
               [120]   BOTTKE JR W F, LOVE S G, TYTELL D, et al. Interpreting the elliptical crater populations on Mars, Venus, and the
                     Moon [J]. Icarus, 2000, 145(1): 108–121. DOI: 10.1006/icar.1999.6323.
               [121]   PIERAZZO E, MELOSH H J. Understanding oblique impacts from experiments, observations, and modeling [J]. Annual
                     Review of Earth and Planetary Sciences, 2000, 28: 141–167. DOI: 10.1146/annurev.earth.28.1.141.
               [122]   HERRICK R R, FORSBERG-TAYLOR N K. The shape and appearance of craters formed by oblique impact on the Moon
                     and Venus [J]. Meteoritics & Planetary Science, 2003, 38(11): 1551–1578. DOI: 10.1111/j.1945-5100.2003.tb00001.x.
               [123]   HESSEN K K, HERRICK R R, YAMAMOTO S, et al. Low-velocity oblique impact experiments in a vacuum [C]//38th
                     Lunar and Planetary Science. USA, 2007: 2141.
               [124]   SHUVALOV V. Ejecta deposition after oblique impacts: an influence of impact scale [J]. Meteoritics & Planetary Science,
                     2011, 46(11): 1713–1718. DOI: 10.1111/j.1945-5100.2011.01259.x.
               [125]   SCHULTZ P H. Atmospheric effects on ejecta emplacement and crater formation on Venus from Magellan [J]. Journal of
                     Geophysical Research: Planets, 1992, 97(E10): 16183–16248. DOI: 10.1029/92JE01508.
               [126]   ANDERSON  J  L  B,  SCHULTZ  P  H,  HEINECK  J  T.  Asymmetry  of  ejecta  flow  during  oblique  impacts  using  three-
                     dimensional particle image velocimetry [J]. Journal of Geophysical Research: Planets, 2003, 108(E8): 5094. DOI: 10.1029/
                     2003JE002075.
               [127]   HERMALYN  B,  SCHULTZ  P  H,  HEINECK  J  T.  Experimental  studies  of  the  ejecta  velocity  distribution  from  oblique
                     impacts: towards an analytical model [C]//43rd Annual Lunar and Planetary Science Conference. 2012 (1659): 2022.
               [128]   ANDERSON  J  L  B,  SCHULTZ  P  H.  Flow-field  center  migration  during  vertical  and  oblique  impacts  [J].  International
                     Journal of Impact Engineering, 2006, 33(1): 35–44. DOI: 10.1016/j.ijimpeng.2006.09.022.
               [129]   OBERBECK V R. Laboratory simulation of impact cratering with high explosives [J]. Journal of Geophysical Research:
                     Solid Earth, 1971, 76(23): 5732–5749. DOI: 10.1029/JB076i023p05732.
               [130]   OBERBECK V R. Application of high explosion cratering data to planetary problems [C]//Impact and Explosion Cratering:
                     Planetary and Terrestrial Implications. 1977: 45–65.
               [131]   ANDERSON J L B, SCHULTZ P H, HEINECK J T. Evolving flow-field centers in oblique impacts [C]//33rd Lunar and
                     Planetary Science. USA, 2002: 1762.
               [132]   JAUMANN R, WILLIAMS D A, BUCZKOWSKI D L, et al. Vesta’s shape and morphology [J]. Science, 2012, 336(6082):
                     687–690. DOI: 10.1126/science.1219122.
               [133]   THOMAS N, BARBIERI C, KELLER H U, et al. The geomorphology of (21) Lutetia: results from the OSIRIS imaging
                     system onboard ESA’s Rosetta spacecraft [J]. Planetary and Space Science, 2012, 66(1): 96–124. DOI: 10.1016/j.pss.2011.
                     10.003.
               [134]   ASCHAUER  J,  KENKMANN  T.  Impact  cratering  on  slopes  [J].  Icarus,  2017,  290:  89–95.  DOI:  10.1016/j.icarus.2017.
                     02.021.
               [135]   ELBESHAUSEN D, WÜNNEMANN K, SIERKS H, et al. The effect of topography on the impact cratering process on
                     Lutetia [C]//43rd Lunar and Planetary Science Conference. USA, 2012: 1867.
               [136]   ELBESHAUSEN D, UND KROHN K, WÜNNEMANN K, et al. Bimodal craters on Vesta: impacts on slopes studied by
                     numerical simulations [C]//44th Lunar and Planetary Science Conference. USA, 2013: 1903.
               [137]   TAKIZAWA S, KATSURAGI H. Scaling laws for the oblique impact cratering on an inclined granular surface [J]. Icarus,
                     2020, 335: 113409. DOI: 10.1016/j.icarus.2019.113409.
               [138]   SHUVALOV V. A mechanism for the production of crater rays [J]. Meteoritics & Planetary Science, 2012, 47(2): 262–267.
                     DOI: 10.1111/j.1945-5100.2011.01324.x.


                                                         121101-24
   36   37   38   39   40   41   42   43   44   45   46