Page 41 - 《爆炸与冲击》2025年第12期
P. 41
第 45 卷 张鸿宇,等: 颗粒靶体撞击溅射行为研究进展 第 12 期
[117] HERMALYN B, SCHULTZ P H, SHIRLEY M, et al. Scouring the surface: ejecta dynamics and the LCROSS impact
event [J]. Icarus, 2012, 218(1): 654–665. DOI: 10.1016/j.icarus.2011.12.025.
[118] HERMALYN B, SCHULTZ P H. Time-resolved studies of hypervelocity vertical impacts into porous particulate targets:
effects of projectile density on early-time coupling and crater growth [J]. Icarus, 2011, 216(1): 269–279. DOI: 10.1016/j.
icarus.2011.09.008.
[119] MATSUE K, YASUI M, ARAKAWA M, et al. Measurements of seismic waves induced by high-velocity impacts:
implications for seismic shaking surrounding impact craters on asteroids [J]. Icarus, 2020, 338: 113520. DOI: 10.1016/j.
icarus.2019.113520.
[120] BOTTKE JR W F, LOVE S G, TYTELL D, et al. Interpreting the elliptical crater populations on Mars, Venus, and the
Moon [J]. Icarus, 2000, 145(1): 108–121. DOI: 10.1006/icar.1999.6323.
[121] PIERAZZO E, MELOSH H J. Understanding oblique impacts from experiments, observations, and modeling [J]. Annual
Review of Earth and Planetary Sciences, 2000, 28: 141–167. DOI: 10.1146/annurev.earth.28.1.141.
[122] HERRICK R R, FORSBERG-TAYLOR N K. The shape and appearance of craters formed by oblique impact on the Moon
and Venus [J]. Meteoritics & Planetary Science, 2003, 38(11): 1551–1578. DOI: 10.1111/j.1945-5100.2003.tb00001.x.
[123] HESSEN K K, HERRICK R R, YAMAMOTO S, et al. Low-velocity oblique impact experiments in a vacuum [C]//38th
Lunar and Planetary Science. USA, 2007: 2141.
[124] SHUVALOV V. Ejecta deposition after oblique impacts: an influence of impact scale [J]. Meteoritics & Planetary Science,
2011, 46(11): 1713–1718. DOI: 10.1111/j.1945-5100.2011.01259.x.
[125] SCHULTZ P H. Atmospheric effects on ejecta emplacement and crater formation on Venus from Magellan [J]. Journal of
Geophysical Research: Planets, 1992, 97(E10): 16183–16248. DOI: 10.1029/92JE01508.
[126] ANDERSON J L B, SCHULTZ P H, HEINECK J T. Asymmetry of ejecta flow during oblique impacts using three-
dimensional particle image velocimetry [J]. Journal of Geophysical Research: Planets, 2003, 108(E8): 5094. DOI: 10.1029/
2003JE002075.
[127] HERMALYN B, SCHULTZ P H, HEINECK J T. Experimental studies of the ejecta velocity distribution from oblique
impacts: towards an analytical model [C]//43rd Annual Lunar and Planetary Science Conference. 2012 (1659): 2022.
[128] ANDERSON J L B, SCHULTZ P H. Flow-field center migration during vertical and oblique impacts [J]. International
Journal of Impact Engineering, 2006, 33(1): 35–44. DOI: 10.1016/j.ijimpeng.2006.09.022.
[129] OBERBECK V R. Laboratory simulation of impact cratering with high explosives [J]. Journal of Geophysical Research:
Solid Earth, 1971, 76(23): 5732–5749. DOI: 10.1029/JB076i023p05732.
[130] OBERBECK V R. Application of high explosion cratering data to planetary problems [C]//Impact and Explosion Cratering:
Planetary and Terrestrial Implications. 1977: 45–65.
[131] ANDERSON J L B, SCHULTZ P H, HEINECK J T. Evolving flow-field centers in oblique impacts [C]//33rd Lunar and
Planetary Science. USA, 2002: 1762.
[132] JAUMANN R, WILLIAMS D A, BUCZKOWSKI D L, et al. Vesta’s shape and morphology [J]. Science, 2012, 336(6082):
687–690. DOI: 10.1126/science.1219122.
[133] THOMAS N, BARBIERI C, KELLER H U, et al. The geomorphology of (21) Lutetia: results from the OSIRIS imaging
system onboard ESA’s Rosetta spacecraft [J]. Planetary and Space Science, 2012, 66(1): 96–124. DOI: 10.1016/j.pss.2011.
10.003.
[134] ASCHAUER J, KENKMANN T. Impact cratering on slopes [J]. Icarus, 2017, 290: 89–95. DOI: 10.1016/j.icarus.2017.
02.021.
[135] ELBESHAUSEN D, WÜNNEMANN K, SIERKS H, et al. The effect of topography on the impact cratering process on
Lutetia [C]//43rd Lunar and Planetary Science Conference. USA, 2012: 1867.
[136] ELBESHAUSEN D, UND KROHN K, WÜNNEMANN K, et al. Bimodal craters on Vesta: impacts on slopes studied by
numerical simulations [C]//44th Lunar and Planetary Science Conference. USA, 2013: 1903.
[137] TAKIZAWA S, KATSURAGI H. Scaling laws for the oblique impact cratering on an inclined granular surface [J]. Icarus,
2020, 335: 113409. DOI: 10.1016/j.icarus.2019.113409.
[138] SHUVALOV V. A mechanism for the production of crater rays [J]. Meteoritics & Planetary Science, 2012, 47(2): 262–267.
DOI: 10.1111/j.1945-5100.2011.01324.x.
121101-24

