Page 37 - 《爆炸与冲击》2025年第12期
P. 37

第 45 卷                  张鸿宇,等: 颗粒靶体撞击溅射行为研究进展                                  第 12 期

                     observation  campaign:  strategies,  implementation,  and  lessons  learned  [J].  Space  Science  Reviews,  2012,  167(1/2/3/4):
                     93–140. DOI: 10.1007/s11214-011-9759-y.
               [27]   GLADSTONE  G  R,  HURLEY  D  M,  RETHERFORD  K  D,  et  al.  LRO-LAMP  observations  of  the  LCROSS  impact
                     plume [J]. Science, 2010, 330(6003): 472–476. DOI: 10.1126/science.1186474.
               [28]   COLAPRETE A, SCHULTZ P, HELDMANN J, et al. Detection of water in the LCROSS ejecta plume [J]. Science, 2010,
                     330(6003): 463–468. DOI: 10.1126/science.1186986.
               [29]   郑永春, 张锋, 付晓辉, 等. 月球上的水: 探测历程与新的证据 [J]. 地质学报, 2011, 85(7): 1069–1078.
                     ZHENG Y C, ZHANG F, FU X H, et al. Water on the Moon: exploration history and new evidence [J]. Acta Geologica
                     Sinica, 2011, 85(7): 1069–1078.
               [30]   COLAPRETE A , ENNICO K , WOODEN D, et al. Water and more: an overview of LCROSS impact results [C]//Lunar &
                     Planetary Institute Science Conference Abstracts. Bulletin of the American Astronomical Society, 2010: 42.
               [31]   ENNICO-SMITH  K.  Lunar  crater  observation  and  sensing  satellite  (LCROSS)  [M]//CUDNIK  B.  Encyclopedia  of  Lunar
                     Science. Cham: Springer, 2023: 506–520. DOI: 10.1007/978-3-319-14541-9_24.
               [32]   BOTTKE JR W F, DURDA D D, NESVORNÝ D, et al. The fossilized size distribution of the main asteroid belt [J]. Icarus,
                     2005, 175(1): 111–140. DOI: 10.1016/j.icarus.2004.10.026.
               [33]   IZIDORO A, RAYMOND S N, PIERENS A, et al. The asteroid belt as a relic from a chaotic early solar system [J]. The
                     Astrophysical Journal, 2016, 833(1): 40. DOI: 10.3847/1538-4357/833/1/40.
               [34]   PARKER E T, CHAN Q H S, GLAVIN D P, et al. Non-protein amino acids identified in carbon-rich Hayabusa particles [J].
                     Meteoritics & Planetary Science, 2022, 57(4): 776–793. DOI: 10.1111/maps.13794.
               [35]   NARAOKA H, TAKANO Y, DWORKIN J P, et al. Soluble organic compounds in asteroid 162173 Ryugu [C]// LISA G,
                     EILEEN S. 53rd Lunar and Planetary Science Conference. USA, 2022, 2678: 1781.
               [36]   KITAZATO K, MILLIKEN R E, IWATA T, et al. The surface composition of asteroid 162173 Ryugu from Hayabusa2 near-
                     infrared spectroscopy [J]. Science, 2019, 364(6437): 272–275. DOI: 10.1126/science.aav7432.
               [37]   HAMILTON  V  E,  SIMON  A  A,  CHRISTENSEN  P  R,  et  al.  Evidence  for  widespread  hydrated  minerals  on  asteroid
                     (101955) Bennu [J]. Nature Astronomy, 2019, 3(4): 332–340. DOI: 10.1038/s41550-019-0722-2.
               [38]   MARTY  B,  ALTWEGG  K,  BALSIGER  H,  et  al.  Xenon  isotopes  in  67P/Churyumov-Gerasimenko  show  that  comets
                     contributed to Earth’s atmosphere [J]. Science, 2017, 356(6342): 1069–1072. DOI: 10.1126/science.aal3496.
               [39]   王兴, 刘建军. 小行星环境特性分析与研究现状 [J]. 航天器环境工程, 2019, 36(6): 533–541. DOI: 10.12126/see.2019.
                     06.002.
                     WANG X, LIU J J. Analyses of the environmental characteristics of asteroids and the current research state [J]. Spacecraft
                     Environment Engineering, 2019, 36(6): 533–541. DOI: 10.12126/see.2019.06.002.
               [40]   季江徽, 胡寿村. 太阳系小天体表面环境综述 [J]. 航天器环境工程, 2019, 36(6): 519–532. DOI: 10.12126/see.2019.
                     06.001.
                     JI  J  H,  HU  S  C.  A  review  of  the  surface  environment  of  small  bodies  in  solar  system  [J].  Spacecraft  Environment
                     Engineering, 2019, 36(6): 519–532. DOI: 10.12126/see.2019.06.001.
               [41]   RIVKIN A. An overview of the asteroids and meteorites [M]//OSWALT T D, FRENCH L M, KALAS P. Planets, Stars and
                     Stellar Systems. Dordrecht: Springer, 2013: 376–429. DOI: 10.1007/978-94-007-5606-9_8.
               [42]   KAWAGUCHI  J,  FUJIWARA  A,  UESUGI  T.  Hayabusa —its  technology  and  science  accomplishment  summary  and
                     Hayabusa-2 [J]. Acta Astronautica, 2008, 62(10/11): 639–647. DOI: 10.1016/j.actaastro.2008.01.028.
               [43]   TACHIBANA S, ABE M, ARAKAWA M, et al. Hayabusa2: scientific importance of samples returned from C-type near-
                     Earth asteroid (162173) 1999 JU3 [J]. Geochemical Journal, 2014, 48(6): 571–587. DOI: 10.2343/geochemj.2.0350.
               [44]   TSUDA Y, YOSHIKAWA M, ABE M, et al. System design of the Hayabusa 2—asteroid sample return mission to 1999
                     JU3 [J]. Acta Astronautica, 2013, 91: 356–362. DOI: 10.1016/j.actaastro.2013.06.028.
               [45]   GAL-EDD  J,  CHEUVRONT  A.  The  OSIRIS-REx  asteroid  sample  return  mission  operations  design  [C]//Proceedings  of
                     2015 IEEE Aerospace Conference. Big Sky: IEEE, 2015: 1–9. DOI: 10.1109/AERO.2015.7118883.
               [46]   LAURETTA  D  S,  BALRAM-KNUTSON  S  S,  BESHORE  E,  et  al.  OSIRIS-REx:  sample  return  from  asteroid  (101955)
                     Bennu [J]. Space Science Reviews, 2017, 212(1/2): 925–984. DOI: 10.1007/s11214-017-0405-1.
               [47]   SCHMIDT N. Planetary defense: global collaboration for defending Earth from asteroids and comets [M]. Cham: Springer,


                                                         121101-20
   32   33   34   35   36   37   38   39   40   41   42