Page 40 - 《爆炸与冲击》2025年第12期
P. 40
第 45 卷 张鸿宇,等: 颗粒靶体撞击溅射行为研究进展 第 12 期
[93] MARSTON J O, SEVILLE J P K, CHEUN Y V, et al. Effect of packing fraction on granular jetting from solid sphere entry
into aerated and fluidized beds [J]. Physics of Fluids, 2008, 20(2): 023301. DOI: 10.1063/1.2835008.
[94] MARSTON J O, THORODDSEN S T. Investigation of granular impact using positron emission particle tracking [J]. Powder
Technology, 2015, 274: 284–288. DOI: 10.1016/j.powtec.2015.01.033.
[95] GORDILLO J M, GEKLE S. Generation and breakup of Worthington jets after cavity collapse. part 2. tip breakup of
stretched jets [J]. Journal of Fluid Mechanics, 2010, 663: 331–346. DOI: 10.1017/S0022112010003538.
[96] NEIDERBACH M, SUO B C, WRIGHT E, et al. Surface particle motions excited by a low velocity normal impact into a
granular medium [J]. Icarus, 2023, 390: 115301. DOI: 10.1016/j.icarus.2022.115301.
[97] LOVE S G, HÖRZ F, BROWNLEE D E. Target porosity effects in impact cratering and collisional disruption [J]. Icarus,
1993, 105(1): 216–224. DOI: 10.1006/icar.1993.1119.
[98] HOUSEN K R, VOSS M E. Ejecta from impact craters in porous materials [C]//32nd Annual Lunar and Planetary Science
Conference. USA, 2001: 1617.
[99] HOUSEN K R. Material motions and ejection velocities for impacts in porous targets [C]//34th Annual Lunar and Planetary
Science Conference. USA, 2003: 1300.
[100] CHAPMAN C R, MERLINE W J, THOMAS P. Cratering on mathilde [J]. Icarus, 1999, 140(1): 28–33. DOI: 10.1006/icar.
1999.6119.
[101] THOMAS P C, VEVERKA J, BELL III J F, et al. Mathilde: size, shape, and geology [J]. Icarus, 1999, 140(1): 17–27. DOI:
10.1006/icar.1999.6121.
[102] THOMAS P C, ARMSTRONG J W, ASMAR S W, et al. Hyperion’s sponge-like appearance [J]. Nature, 2007, 448(7149):
50–53. DOI: 10.1038/nature05779.
[103] YUE Z, JOHNSON B C, MINTON D A, et al. Projectile remnants in central peaks of lunar impact craters [J]. Nature
Geoscience, 2013, 6(6): 435–437. DOI: 10.1038/ngeo1828.
[104] CINTALA M J, BERTHOUD L, HÖRZ F. Ejection-velocity distributions from impacts into coarse-grained sand [J].
Meteoritics & Planetary Science, 1999, 34(4): 605–623. DOI: 10.1111/j.1945-5100.1999.tb01367.x.
[105] ANDERSON J L B, CINTALA M J, SIEBENALER S A, et al. Ejecta-and size-scaling considerations from impacts of glass
projectiles into sand [C]//Lunar and Planetary Science Conference. 2007.
[106] BARNOUIN O S, CINTALA M J, CRAWFORD D A. Investigating the effects of shock duration and grain size on ejecta
excavation and crater growth [C]//33rd Lunar and Planetary Science. USA, 2002: 1738.
[107] BARNOUIN O S, DALY R T, CINTALA M J, et al. Impacts into coarse-grained spheres at moderate impact velocities:
implications for cratering on asteroids and planets [J]. Icarus, 2019, 325: 67–83. DOI: 10.1016/j.icarus.2019.02.004.
[108] ASPHAUG E, OSTRO S J, HUDSON R S, et al. Disruption of kilometre-sized asteroids by energetic collisions [J]. Nature,
1998, 393(6684): 437–440. DOI: 10.1038/30911.
[109] SZARF K, COMBE G, VILLARD P. Influence of the grains shape on the mechanical behavior of granular materials [J]. AIP
Conference Proceedings, 2009, 1145(1): 357–360. DOI: 10.1063/1.3179932.
[110] KIM B S, SAKAKIBARA T, PARK S W, et al. Effects of grain shape on mechanical behavior of granular materials using
DEM analysis [J]. KSCE Journal of Civil Engineering, 2021, 25(6): 1939–1950. DOI: 10.1007/s12205-021-0582-z.
[111] TANG X, YANG J. Wave propagation in granular material: what is the role of particle shape? [J]. Journal of the Mechanics
and Physics of Solids, 2021, 157: 104605. DOI: 10.1016/j.jmps.2021.104605.
[112] YAMAMOTO S, OKABE N, KADONO T, et al. Measurements of ejecta velocity distribution by a high-speed video
camera [C]//36th Annual Lunar and Planetary Science Conference. USA, 2005: 1600.
[113] GUO F, ZHANG H, YU Y, et al. Slow intrusion experiments into granular media under microgravity [J]. Advances in Space
Research, 2024, 73(5): 2774–2787. DOI: 10.1016/j.asr.2023.12.004.
[114] YASUI M, MATSUMOTO E, ARAKAWA M. Experimental study on impact-induced seismic wave propagation through
granular materials [J]. Icarus, 2015, 260: 320–331. DOI: 10.1016/j.icarus.2015.07.032.
[115] KUROSAWA K, OKAMOTO T, GENDA H. Hydrocode modeling of the spallation process during hypervelocity impacts:
implications for the ejection of Martian meteorites [J]. Icarus, 2018, 301: 219–234. DOI: 10.1016/j.icarus.2017.09.015.
[116] QUILLEN A C, NEIDERBACH M, SUO B C, et al. Propagation and attenuation of pulses driven by low velocity normal
impacts in granular media [J]. Icarus, 2022, 386: 115139. DOI: 10.1016/j.icarus.2022.115139.
121101-23

