Page 39 - 《爆炸与冲击》2025年第12期
P. 39

第 45 卷                  张鸿宇,等: 颗粒靶体撞击溅射行为研究进展                                  第 12 期

                     LIU W J, ZHANG Q M, MA X H, et al. A review of the models of near-Earth object impact cratering on Earth [J]. Explosion
                     and Shock Waves, 2021, 41(12): 121404. DOI: 10.11883/bzycj-2021-0255.
               [70]   COLLINS A L, ADDISS J W, WALLEY S M, et al. The effect of rod nose shape on the internal flow fields during the
                     ballistic  penetration  of  sand  [J].  International  Journal  of  Impact  Engineering,  2011,  38(12):  951–963.  DOI:  10.1016/j.
                     ijimpeng.2011.08.002.
               [71]   SUN M, LI J C, ZHANG H Y, et al. Effect of relative density and grain size on the internal flow field during the ballistic
                     penetration  of  sand  [J].  International  Journal  of  Impact  Engineering,  2024,  185:  104859.  DOI:  10.1016/j.ijimpeng.2023.
                     104859.
               [72]   DEBOEUF S, GONDRET P, RABAUD M. Dynamics of grain ejection by sphere impact on a granular bed [J]. Physical
                     Review E, 2009, 79(4): 041306. DOI: 10.1103/PhysRevE.79.041306.
               [73]   HAWKE B R, BLEWETT D T, LUCEY P G, et al. The origin of lunar crater rays [J]. Icarus, 2004, 170(1): 1–16. DOI:
                     10.1016/j.icarus.2004.02.013.
               [74]   HARGITAI H, KERESZTURI Á. Encyclopedia of planetary landforms [M]. New York: Springer, 2015.
               [75]   KADONO T, SUZUKI A I, WADA K, et al. Crater-ray formation by impact-induced ejecta particles [J]. Icarus, 2015, 250:
                     215–221. DOI: 10.1016/j.icarus.2014.11.030.
               [76]   SABUWALA  T,  BUTCHER  C,  GIOIA  G,  et  al.  Ray  systems  in  granular  cratering  [J].  Physical  Review  Letters,  2018,
                     120(26): 264501. DOI: 10.1103/PhysRevLett.120.264501.
               [77]   PACHECO-VÁZQUEZ F. Ray systems and craters generated by the impact of nonspherical projectiles [J]. Physical Review
                     Letters, 2019, 122(16): 164501. DOI: 10.1103/PhysRevLett.122.164501.
               [78]   HOUSEN K R, HOLSAPPLE K A. Ejecta from impact craters [J]. Icarus, 2011, 211(1): 856–875. DOI: 10.1016/j.icarus.
                     2010.09.017.
               [79]   KATSURAGI H. Physics of soft impact and cratering [M]. Tokyo: Springer, 2016. DOI: 10.1007/978-4-431-55648-0.
               [80]   MAXWELL  D  E.  Simple  Z  model  for  cratering,  ejection,  and  the  overturned  flap  [C]//Impact  and  Explosion  Cratering:
                     Planetary and Terrestrial Implications. 1977: 1003–1008.
               [81]   ORPHAL D L. Calculations of explosion cratering. Ⅱ: cratering mechanics and phenomenology [C]//Impact and Explosion
                     Cratering: Planetary and Terrestrial Implications. 1977: 907–917.
               [82]   O’KEEFE J D, AHRENS T J. The effect of gravity on impact crater excavation time and maximum depth: comparison with
                     experiment [C]//Lunar and Planetary Science. USA, 1979: 934–936.
               [83]   O’KEEFE  J  D,  AHRENS  T  J.  Impact  cratering:  the  effect  of  crustal  strength  and  planetary  gravity  [J].  Reviews  of
                     Geophysics, 1981, 19(1): 1–12. DOI: 10.1029/RG019i001p00001.
               [84]   AUSTIN M G, THOMSEN J M, RUHL S F, et al. Calculational investigation of impact cratering dynamics: material motions
                     during the crater growth period [J]. Lunar and Planetary Science Conference Proceedings, 1980: 116946455.
               [85]   ANDERSON J L B, SCHULTZ P H, HEINECK J T. Experimental ejection angles for oblique impacts: implications for the
                     subsurface flow-field [J]. Meteoritics & Planetary Science, 2004, 39(2): 303–320. DOI: 10.1111/j.1945-5100.2004.tb00342.x.
               [86]   CROFT S K. Cratering flow fields: implications for the excavation and transient expansion stages of crater formation [C]//
                     11th Lunar and Planetary Science Conference. 1980: 2347–2378.
               [87]   TSUJIDO S, ARAKAWA M, SUZUKI A I, et al. Ejecta velocity distribution of impact craters formed on quartz sand: effect
                     of projectile density on crater scaling law [J]. Icarus, 2015, 262: 79–92. DOI: 10.1016/j.icarus.2015.08.035.
               [88]   JODAR B, HÉBERT D, AUBERT B, et al. Impacts into porous graphite: an investigation on crater formation and ejecta
                     distribution [J]. International Journal of Impact Engineering, 2021, 152: 103842. DOI: 10.1016/j.ijimpeng.2021.103842.
               [89]   PRIEUR N C, ROLF T, LUTHER R, et al. The effect of target properties on transient crater scaling for simple craters [J].
                     Journal of Geophysical Research: Planets, 2017, 122(8): 1704–1726. DOI: 10.1002/2017JE005283.
               [90]   LUTHER R, ZHU M H, COLLINS G, et al. Effect of target properties and impact velocity on ejection dynamics and ejecta
                     deposition [J]. Meteoritics & Planetary Science, 2018, 53(8): 1705–1732. DOI: 10.1111/maps.13143.
               [91]   MARSTON J O, LI E Q, THORODDSEN S T. Evolution of fluid-like granular ejecta generated by sphere impact [J]. Journal
                     of Fluid Mechanics, 2012, 704: 5–36. DOI: 10.1017/jfm.2012.141.
               [92]   LOHSE  D,  BERGMANN  R,  MIKKELSEN  R,  et  al.  Impact  on  soft  sand:  void  collapse  and  jet  formation  [J].  Physical
                     Review Letters, 2004, 93(19): 198003. DOI: 10.1103/PhysRevLett.93.198003.


                                                         121101-22
   34   35   36   37   38   39   40   41   42   43   44