Page 39 - 《爆炸与冲击》2025年第12期
P. 39
第 45 卷 张鸿宇,等: 颗粒靶体撞击溅射行为研究进展 第 12 期
LIU W J, ZHANG Q M, MA X H, et al. A review of the models of near-Earth object impact cratering on Earth [J]. Explosion
and Shock Waves, 2021, 41(12): 121404. DOI: 10.11883/bzycj-2021-0255.
[70] COLLINS A L, ADDISS J W, WALLEY S M, et al. The effect of rod nose shape on the internal flow fields during the
ballistic penetration of sand [J]. International Journal of Impact Engineering, 2011, 38(12): 951–963. DOI: 10.1016/j.
ijimpeng.2011.08.002.
[71] SUN M, LI J C, ZHANG H Y, et al. Effect of relative density and grain size on the internal flow field during the ballistic
penetration of sand [J]. International Journal of Impact Engineering, 2024, 185: 104859. DOI: 10.1016/j.ijimpeng.2023.
104859.
[72] DEBOEUF S, GONDRET P, RABAUD M. Dynamics of grain ejection by sphere impact on a granular bed [J]. Physical
Review E, 2009, 79(4): 041306. DOI: 10.1103/PhysRevE.79.041306.
[73] HAWKE B R, BLEWETT D T, LUCEY P G, et al. The origin of lunar crater rays [J]. Icarus, 2004, 170(1): 1–16. DOI:
10.1016/j.icarus.2004.02.013.
[74] HARGITAI H, KERESZTURI Á. Encyclopedia of planetary landforms [M]. New York: Springer, 2015.
[75] KADONO T, SUZUKI A I, WADA K, et al. Crater-ray formation by impact-induced ejecta particles [J]. Icarus, 2015, 250:
215–221. DOI: 10.1016/j.icarus.2014.11.030.
[76] SABUWALA T, BUTCHER C, GIOIA G, et al. Ray systems in granular cratering [J]. Physical Review Letters, 2018,
120(26): 264501. DOI: 10.1103/PhysRevLett.120.264501.
[77] PACHECO-VÁZQUEZ F. Ray systems and craters generated by the impact of nonspherical projectiles [J]. Physical Review
Letters, 2019, 122(16): 164501. DOI: 10.1103/PhysRevLett.122.164501.
[78] HOUSEN K R, HOLSAPPLE K A. Ejecta from impact craters [J]. Icarus, 2011, 211(1): 856–875. DOI: 10.1016/j.icarus.
2010.09.017.
[79] KATSURAGI H. Physics of soft impact and cratering [M]. Tokyo: Springer, 2016. DOI: 10.1007/978-4-431-55648-0.
[80] MAXWELL D E. Simple Z model for cratering, ejection, and the overturned flap [C]//Impact and Explosion Cratering:
Planetary and Terrestrial Implications. 1977: 1003–1008.
[81] ORPHAL D L. Calculations of explosion cratering. Ⅱ: cratering mechanics and phenomenology [C]//Impact and Explosion
Cratering: Planetary and Terrestrial Implications. 1977: 907–917.
[82] O’KEEFE J D, AHRENS T J. The effect of gravity on impact crater excavation time and maximum depth: comparison with
experiment [C]//Lunar and Planetary Science. USA, 1979: 934–936.
[83] O’KEEFE J D, AHRENS T J. Impact cratering: the effect of crustal strength and planetary gravity [J]. Reviews of
Geophysics, 1981, 19(1): 1–12. DOI: 10.1029/RG019i001p00001.
[84] AUSTIN M G, THOMSEN J M, RUHL S F, et al. Calculational investigation of impact cratering dynamics: material motions
during the crater growth period [J]. Lunar and Planetary Science Conference Proceedings, 1980: 116946455.
[85] ANDERSON J L B, SCHULTZ P H, HEINECK J T. Experimental ejection angles for oblique impacts: implications for the
subsurface flow-field [J]. Meteoritics & Planetary Science, 2004, 39(2): 303–320. DOI: 10.1111/j.1945-5100.2004.tb00342.x.
[86] CROFT S K. Cratering flow fields: implications for the excavation and transient expansion stages of crater formation [C]//
11th Lunar and Planetary Science Conference. 1980: 2347–2378.
[87] TSUJIDO S, ARAKAWA M, SUZUKI A I, et al. Ejecta velocity distribution of impact craters formed on quartz sand: effect
of projectile density on crater scaling law [J]. Icarus, 2015, 262: 79–92. DOI: 10.1016/j.icarus.2015.08.035.
[88] JODAR B, HÉBERT D, AUBERT B, et al. Impacts into porous graphite: an investigation on crater formation and ejecta
distribution [J]. International Journal of Impact Engineering, 2021, 152: 103842. DOI: 10.1016/j.ijimpeng.2021.103842.
[89] PRIEUR N C, ROLF T, LUTHER R, et al. The effect of target properties on transient crater scaling for simple craters [J].
Journal of Geophysical Research: Planets, 2017, 122(8): 1704–1726. DOI: 10.1002/2017JE005283.
[90] LUTHER R, ZHU M H, COLLINS G, et al. Effect of target properties and impact velocity on ejection dynamics and ejecta
deposition [J]. Meteoritics & Planetary Science, 2018, 53(8): 1705–1732. DOI: 10.1111/maps.13143.
[91] MARSTON J O, LI E Q, THORODDSEN S T. Evolution of fluid-like granular ejecta generated by sphere impact [J]. Journal
of Fluid Mechanics, 2012, 704: 5–36. DOI: 10.1017/jfm.2012.141.
[92] LOHSE D, BERGMANN R, MIKKELSEN R, et al. Impact on soft sand: void collapse and jet formation [J]. Physical
Review Letters, 2004, 93(19): 198003. DOI: 10.1103/PhysRevLett.93.198003.
121101-22

