Page 36 - 《爆炸与冲击》2025年第12期
P. 36
第 45 卷 张鸿宇,等: 颗粒靶体撞击溅射行为研究进展 第 12 期
[7] ZHU M H, FA W Z, IP W H, et al. Morphology of asteroid (4179) Toutatis as imaged by Chang’E-2 spacecraft [J].
Geophysical Research Letters, 2014, 41(2): 328–333. DOI: 10.1002/2013GL058914.
[8] HOLSAPPLE K A. Catastrophic disruptions and cratering of Solar System bodies: a review and new results [J]. Planetary
and Space Science, 1994, 42(12): 1067–1078. DOI: 10.1016/0032-0633(94)90007-8.
[9] PATI J K, REIMOLD W U. Impact cratering—fundamental process in geoscience and planetary science [J]. Journal of Earth
System Science, 2007, 116(2): 81–98. DOI: 10.1007/s12040-007-0009-3.
[10] COLLINS G S, MELOSH H J, OSINSKI G R. The impact-cratering process [J]. Elements, 2012, 8(1): 25–30. DOI:
10.2113/gselements.8.1.25.
[11] MICHEL P, MORBIDELLI A. Review of the population of impactors and the impact cratering rate in the inner solar
system [J]. Meteoritics & Planetary Science, 2007, 42(11): 1861–1869. DOI: 10.1111/j.1945-5100.2007.tb00545.x.
[12] SUGIMOTO C, TATSUMI E, CHO Y, et al. High-resolution observations of bright boulders on asteroid Ryugu: 1. size
frequency distribution and morphology [J]. Icarus, 2021, 369: 114529. DOI: 10.1016/j.icarus.2021.114529.
[13] GLASS B P, SIMONSON B M. Distal impact ejecta layers: spherules and more [J]. Elements, 2012, 8(1): 43–48. DOI:
10.2113/gselements.8.1.43.
[14] WEISS D K, HEAD J W. Ejecta mobility of layered ejecta craters on Mars: assessing the influence of snow and ice
deposits [J]. Icarus, 2014, 233: 131–146. DOI: 10.1016/j.icarus.2014.01.038.
[15] MINTON D A, FASSETT C I, HIRABAYASHI M, et al. The equilibrium size-frequency distribution of small craters reveals
the effects of distal ejecta on lunar landscape morphology [J]. Icarus, 2019, 326: 63–87. DOI: 10.1016/j.icarus.2019.02.021.
[16] WULF G, KENKMANN T. High-resolution studies of double-layered ejecta craters: morphology, inherent structure, and a
phenomenological formation model [J]. Meteoritics & Planetary Science, 2015, 50(2): 173–203. DOI: 10.1111/maps.12416.
[17] OSINSKI G R, TORNABENE L L, GRIEVE R A F. Impact ejecta emplacement on terrestrial planets [J]. Earth and
Planetary Science Letters, 2011, 310(3/4): 167–181. DOI: 10.1016/j.epsl.2011.08.012.
[18] XIE M G, LIU T T, XU A A. Ballistic sedimentation of impact crater ejecta: implications for the provenance of lunar
samples and the resurfacing effect of ejecta on the lunar surface [J]. Journal of Geophysical Research: Planets, 2020, 125(5):
e2019JE006113. DOI: 10.1029/2019JE006113.
[19] 程彬, 于洋, 宝音贺西. 小天体接触探测颗粒动力学研究进展 [J]. 中国科学: 技术科学, 2021, 51(11): 1299–1314. DOI:
10.1360/SST-2021-0169.
CHENG B, YANG Y, BAOYIN H X. Recent advances in granular dynamics for small-body touchdown missions [J].
SCIENTIA SINICA Technologica, 2021, 51(11): 1299–1314. DOI: 10.1360/SST-2021-0169.
[20] 肖智勇, 岳宗玉, 谢明刚, 等. 月球的撞击历史及其对月表物质的改造 [J]. 矿物岩石地球化学通报, 2023, 42(3): 462–477.
DOI: 10.19658/j.issn.1007-2802.2023.42.051.
XIAO Z Y, YUE Z Y, XIE M G, et al. Impact history of the Moon and its modification of lunar surface materials [J]. Bulletin
of Mineralogy, Petrology and Geochemistry, 2023, 42(3): 462–477. DOI: 10.19658/j.issn.1007-2802.2023.42.051.
[21] 张荣桥, 黄江川, 赫荣伟, 等. 小行星探测发展综述 [J]. 深空探测学报, 2019, 6(5): 417–423, 455. DOI: 10.15982/j.issn.
2095-7777.2019.05.002.
ZHANG R Q, HUANG J C, HE R W, et al. The development overview of asteroid exploration [J]. Journal of Deep Space
Exploration, 2019, 6(5): 417–423, 455. DOI: 10.15982/j.issn.2095-7777.2019.05.002.
[22] 李春来, 刘建军, 严韦, 等. 小行星探测科学目标进展与展望 [J]. 深空探测学报, 2019, 6(5): 424–436. DOI: 10.15982/j.
issn.2095-7777.2019.05.003.
LI C L, LIU J J, YAN W, et al. Overview of scientific objectives for minor planets exploration [J]. Journal of Deep Space
Exploration, 2019, 6(5): 424–436. DOI: 10.15982/j.issn.2095-7777.2019.05.003.
[23] A'HEARN M F, BELTON M J S, DELAMERE W A, et al. Deep impact: excavating comet Tempel 1 [J]. Science, 2005,
310(5746): 258–264. DOI: 10.1126/science.1118923.
[24] RICHARDSON J E, MELOSH H J, LISSE C M, et al. A ballistics analysis of the deep impact ejecta plume: determining
Comet Tempel 1’s gravity, mass, and density [J]. Icarus, 2007, 191(2S): 176–209. DOI: 10.1016/j.icarus.2007.08.033.
[25] BENSCH F, MELNICK G J, NEUFELD D A, et al. Submillimeter wave astronomy satellite observations of comet
9P/Tempel 1 and deep impact [J]. Icarus, 2006, 184(2): 602–610. DOI: 10.1016/j.icarus.2006.05.016.
[26] HELDMANN J L, COLAPRETE A, WOODEN D H, et al. LCROSS (lunar crater observation and sensing satellite)
121101-19

