Page 36 - 《爆炸与冲击》2025年第12期
P. 36

第 45 卷                  张鸿宇,等: 颗粒靶体撞击溅射行为研究进展                                  第 12 期

               [7]    ZHU  M  H,  FA  W  Z,  IP  W  H,  et  al.  Morphology  of  asteroid  (4179)  Toutatis  as  imaged  by  Chang’E-2  spacecraft  [J].
                     Geophysical Research Letters, 2014, 41(2): 328–333. DOI: 10.1002/2013GL058914.
               [8]    HOLSAPPLE K A. Catastrophic disruptions and cratering of Solar System bodies: a review and new results [J]. Planetary
                     and Space Science, 1994, 42(12): 1067–1078. DOI: 10.1016/0032-0633(94)90007-8.
               [9]    PATI J K, REIMOLD W U. Impact cratering—fundamental process in geoscience and planetary science [J]. Journal of Earth
                     System Science, 2007, 116(2): 81–98. DOI: 10.1007/s12040-007-0009-3.
               [10]   COLLINS  G  S,  MELOSH  H  J,  OSINSKI  G  R.  The  impact-cratering  process  [J].  Elements,  2012,  8(1):  25–30.  DOI:
                     10.2113/gselements.8.1.25.
               [11]   MICHEL  P,  MORBIDELLI  A.  Review  of  the  population  of  impactors  and  the  impact  cratering  rate  in  the  inner  solar
                     system [J]. Meteoritics & Planetary Science, 2007, 42(11): 1861–1869. DOI: 10.1111/j.1945-5100.2007.tb00545.x.
               [12]   SUGIMOTO C, TATSUMI E, CHO Y, et al. High-resolution observations of bright boulders on asteroid Ryugu: 1. size
                     frequency distribution and morphology [J]. Icarus, 2021, 369: 114529. DOI: 10.1016/j.icarus.2021.114529.
               [13]   GLASS B P, SIMONSON B M. Distal impact ejecta layers: spherules and more [J]. Elements, 2012, 8(1): 43–48. DOI:
                     10.2113/gselements.8.1.43.
               [14]   WEISS  D  K,  HEAD  J  W.  Ejecta  mobility  of  layered  ejecta  craters  on  Mars:  assessing  the  influence  of  snow  and  ice
                     deposits [J]. Icarus, 2014, 233: 131–146. DOI: 10.1016/j.icarus.2014.01.038.
               [15]   MINTON D A, FASSETT C I, HIRABAYASHI M, et al. The equilibrium size-frequency distribution of small craters reveals
                     the effects of distal ejecta on lunar landscape morphology [J]. Icarus, 2019, 326: 63–87. DOI: 10.1016/j.icarus.2019.02.021.
               [16]   WULF G, KENKMANN T. High-resolution studies of double-layered ejecta craters: morphology, inherent structure, and a
                     phenomenological formation model [J]. Meteoritics & Planetary Science, 2015, 50(2): 173–203. DOI: 10.1111/maps.12416.
               [17]   OSINSKI  G  R,  TORNABENE  L  L,  GRIEVE  R  A  F.  Impact  ejecta  emplacement  on  terrestrial  planets  [J].  Earth  and
                     Planetary Science Letters, 2011, 310(3/4): 167–181. DOI: 10.1016/j.epsl.2011.08.012.
               [18]   XIE  M  G,  LIU  T  T,  XU  A  A.  Ballistic  sedimentation  of  impact  crater  ejecta:  implications  for  the  provenance  of  lunar
                     samples and the resurfacing effect of ejecta on the lunar surface [J]. Journal of Geophysical Research: Planets, 2020, 125(5):
                     e2019JE006113. DOI: 10.1029/2019JE006113.
               [19]   程彬, 于洋, 宝音贺西. 小天体接触探测颗粒动力学研究进展 [J]. 中国科学: 技术科学, 2021, 51(11): 1299–1314. DOI:
                     10.1360/SST-2021-0169.
                     CHENG  B,  YANG  Y,  BAOYIN  H  X.  Recent  advances  in  granular  dynamics  for  small-body  touchdown  missions  [J].
                     SCIENTIA SINICA Technologica, 2021, 51(11): 1299–1314. DOI: 10.1360/SST-2021-0169.
               [20]   肖智勇, 岳宗玉, 谢明刚, 等. 月球的撞击历史及其对月表物质的改造 [J]. 矿物岩石地球化学通报, 2023, 42(3): 462–477.
                     DOI: 10.19658/j.issn.1007-2802.2023.42.051.
                     XIAO Z Y, YUE Z Y, XIE M G, et al. Impact history of the Moon and its modification of lunar surface materials [J]. Bulletin
                     of Mineralogy, Petrology and Geochemistry, 2023, 42(3): 462–477. DOI: 10.19658/j.issn.1007-2802.2023.42.051.
               [21]   张荣桥, 黄江川, 赫荣伟, 等. 小行星探测发展综述 [J]. 深空探测学报, 2019, 6(5): 417–423, 455. DOI: 10.15982/j.issn.
                     2095-7777.2019.05.002.
                     ZHANG R Q, HUANG J C, HE R W, et al. The development overview of asteroid exploration [J]. Journal of Deep Space
                     Exploration, 2019, 6(5): 417–423, 455. DOI: 10.15982/j.issn.2095-7777.2019.05.002.
               [22]   李春来, 刘建军, 严韦, 等. 小行星探测科学目标进展与展望 [J]. 深空探测学报, 2019, 6(5): 424–436. DOI: 10.15982/j.
                     issn.2095-7777.2019.05.003.
                     LI C L, LIU J J, YAN W, et al. Overview of scientific objectives for minor planets exploration [J]. Journal of Deep Space
                     Exploration, 2019, 6(5): 424–436. DOI: 10.15982/j.issn.2095-7777.2019.05.003.
               [23]   A'HEARN M F, BELTON M J S, DELAMERE W A, et al. Deep impact: excavating comet Tempel 1 [J]. Science, 2005,
                     310(5746): 258–264. DOI: 10.1126/science.1118923.
               [24]   RICHARDSON J E, MELOSH H J, LISSE C M, et al. A ballistics analysis of the deep impact ejecta plume: determining
                     Comet Tempel 1’s gravity, mass, and density [J]. Icarus, 2007, 191(2S): 176–209. DOI: 10.1016/j.icarus.2007.08.033.
               [25]   BENSCH  F,  MELNICK  G  J,  NEUFELD  D  A,  et  al.  Submillimeter  wave  astronomy  satellite  observations  of  comet
                     9P/Tempel 1 and deep impact [J]. Icarus, 2006, 184(2): 602–610. DOI: 10.1016/j.icarus.2006.05.016.
               [26]   HELDMANN  J  L,  COLAPRETE  A,  WOODEN  D  H,  et  al.  LCROSS  (lunar  crater  observation  and  sensing  satellite)


                                                         121101-19
   31   32   33   34   35   36   37   38   39   40   41