Page 47 - 《爆炸与冲击》2023年第2期
P. 47

第 43 卷                 杨    鑫,等: 单晶与纳米多晶锡层裂的分子动力学研究                              第 2 期

               [50]  MABIRE C, HÉREIL P L. Shock induced polymorphic transition and melting of tin [J]. AIP Conference Proceedings, 2000,
                    505(1): 93–96. DOI: 10.1063/1.1303429.
               [51]  WEIR S T, LIPP M J, FALABELLA S, et al. High pressure melting curve of tin measured using an internal resistive heating
                    technique to 45 GPa [J]. Journal of Applied Physics, 2012, 111(12): 123529. DOI: 10.1063/1.4730968.
               [52]  LAZICKI A, RYGG J R, COPPARI F, et al. X-Ray diffraction of solid tin to 1.2 TPa [J]. Physical Review Letters, 2015,
                    115(7): 075502. DOI: 10.1103/PhysRevLett.115.075502.
               [53]  BRIGGS  R,  DAISENBERGER  D,  LORD  O  T,  et  al.  High-pressure  melting  behavior  of  tin  up  to  105 GPa  [J].  Physical
                    Review B, 2017, 95(5): 054102. DOI: 10.1103/PhysRevB.95.054102.
               [54]  MA W, ZHU W J, HOU Y. A comparative study on shock compression of nanocrystalline Al and Cu: shock profiles and
                    microscopic views of plasticity [J]. Journal of Applied Physics, 2013, 114(16): 163504. DOI: 10.1063/1.4826624.
               [55]  TIAN X, CUI J Z, MA K P, et al. Shock-induced plasticity and damage in single-crystalline Cu at elevated temperatures by
                    molecular dynamics simulations [J]. International Journal of Heat and Mass Transfer, 2020, 158: 120013. DOI: 10.1016/j.
                    ijheatmasstransfer.2020.120013.
               [56]  YANG X, ZENG X G, WANG J, et al. Atomic-scale modeling of the void nucleation, growth, and coalescence in Al at high
                    strain rates [J]. Mechanics of Materials, 2019, 135: 98–113. DOI: 10.1016/j.mechmat.2019.05.005.
               [57]  QI M L, LUO C, HE H L, et al. Damage property of incompletely spalled aluminum under shock wave loading [J]. Journal of
                    Applied Physics, 2012, 111(4): 043506. DOI: 10.1063/1.3681301.
               [58]  WANG Y G, HE H L, WANG L L. Critical damage evolution model for spall failure of ductile metals [J]. Mechanics of
                    Materials, 2013, 56: 131–141. DOI: 10.1016/j.mechmat.2012.10.004.
               [59]  STRACHAN A, ÇAĞIN T, GODDARD III W A. Critical behavior in spallation failure of metals [J]. Physical Review B,
                    2001, 63(6): 060103. DOI: 10.1103/PhysRevB.63.060103.
               [60]  YANG X, ZENG X G, WANG F, et al. Spallation fracture dependence on shock intensity and loading duration in single-
                    crystal aluminum [J]. Computational Materials Science, 2022, 210: 111060. DOI: 10.1016/j.commatsci.2021.111060.
               [61]  贺红亮. 动态拉伸断裂的物理判据研究 [J]. 高压物理学报, 2013, 27(2): 153–161. DOI: 10.11858/gywlxb.2013.02.001.
                    HE H L. Physical criterion of dynamic tensile fracture [J]. Chinese Journal of High Pressure Physics, 2013, 27(2): 153–161.
                    DOI: 10.11858/gywlxb.2013.02.001.
                                                                                          (责任编辑    王小飞)





































                                                         023101-18
   42   43   44   45   46   47   48   49   50   51   52