Page 46 - 《爆炸与冲击》2023年第2期
P. 46

第 43 卷                 杨    鑫,等: 单晶与纳米多晶锡层裂的分子动力学研究                              第 2 期

               [29]  王嘉楠, 伍鲍, 何安民, 等. 强冲击下金属材料动态损伤与破坏的分子动力学模拟研究进展 [J]. 高压物理学报, 2021,
                    35(4): 040101. DOI: 10.11858/gywlxb.20210747.
                    WANG J N, WU B, HE A M, et al. Research progress on dynamic damage and failure of metal materials under shock loading
                    with  molecular  dynamics  simulation  [J].  Chinese  Journal  of  High  Pressure  Physics,  2021,  35(4): 040101.  DOI:  10.11858/
                    gywlxb.20210747.
               [30]  LUO S N, GERMANN T C, TONKS D L. Spall damage of copper under supported and decaying shock loading [J]. Journal of
                    Applied Physics, 2009, 106(12): 123518. DOI: 10.1063/1.3271414.
               [31]  SHAO J L, WANG P, HE A M, et al. Spall strength of aluminium single crystals under high strain rates: molecular dynamics
                    study [J]. Journal of Applied Physics, 2013, 114(17): 173501. DOI: 10.1063/1.4828709.
               [32]  HAHN E N, GERMANN T C, RAVELO R, et al. On the ultimate tensile strength of tantalum [J]. Acta Materialia, 2017, 126:
                    313–328. DOI: 10.1016/j.actamat.2016.12.033.
               [33]  HAHN E N, FENSIN S J, GERMANN T C, et al. Orientation dependent spall strength of tantalum single crystals [J]. Acta
                    Materialia, 2018, 159: 241–248. DOI: 10.1016/j.actamat.2018.07.073.
               [34]  DE RESSÉGUIER T, SIGNOR L, DRAGON A, et al. Spallation in laser shock-loaded tin below and just above melting on
                    release [J]. Journal of Applied Physics, 2007, 102(7): 073535. DOI: 10.1063/1.2795436.
               [35]  SOULARD L, DURAND O. Observation of phase transitions in shocked tin by molecular dynamics [J]. Journal of Applied
                    Physics, 2020, 127(16): 165901. DOI: 10.1063/5.0003089.
               [36]  XIANG  M  Z,  HU  H  B,  CHEN  J,  et  al.  Molecular  dynamics  simulations  of  micro-spallation  of  single  crystal  lead  [J].
                    Modelling and Simulation in Materials Science and Engineering, 2013, 21(5): 055005. DOI: 10.1088/0965-0393/21/5/055005.
               [37]  XIANG M Z, HU H B, CHEN J. Spalling and melting in nanocrystalline Pb under shock loading: molecular dynamics studies [J].
                    Journal of Applied Physics, 2013, 113(14): 144312. DOI: 10.1063/1.4799388.
               [38]  XIANG M Z, CHEN J, SU R. Spalling behaviors of Pb induced by ramp-wave-loading: effects of the loading rise time studied
                    by molecular dynamics simulations [J]. Computational Materials Science, 2016, 117: 370–379. DOI: 10.1016/j.commatsci.
                    2016.02.004.
               [39]  LIAO  Y,  XIANG  M  Z,  ZENG  X  G,  et  al.  Molecular  dynamics  study  of  the  micro-spallation  of  single  crystal  tin  [J].
                    Computational Materials Science, 2014, 95: 89–98. DOI: 10.1016/j.commatsci.2014.07.014.
               [40]  SHAO J L, WANG C, WANG P, et al. Atomistic simulations and modeling analysis on the spall damage in lead induced by
                    decaying shock [J]. Mechanics of Materials, 2019, 131: 78–83. DOI: 10.1016/j.mechmat.2019.01.012.
               [41]  WANG K, ZHANG F G, HE A M, et al. An atomic view on spall responses of release melted lead induced by decaying shock
                    loading [J]. Journal of Applied Physics, 2019, 125(15): 155107. DOI: 10.1063/1.5081920.
               [42]  WANG X X, HE A M, ZHOU T T, et al. Spall damage in single crystal tin under shock wave loading: a molecular dynamics
                    simulation [J]. Mechanics of Materials, 2021, 160: 103991. DOI: 10.1016/j.mechmat.2021.103991.
               [43]  RAVELO  R,  BASKES  M.  Equilibrium  and  thermodynamic  properties  of  grey,  white,  and  liquid  tin  [J].  Physical  Review
                    Letters, 1997, 79(13): 2482–2485. DOI: 10.1103/PhysRevLett.79.2482.
               [44]  HIREL P. Atomsk: a tool for manipulating and converting atomic data files [J]. Computer Physics Communications, 2015,
                    197: 212–219. DOI: 10.1016/j.cpc.2015.07.012.
               [45]  STUKOWSKI  A.  Visualization  and  analysis  of  atomistic  simulation  data  with  OVITO –the  open  visualization  tool  [J].
                    Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012. DOI: 10.1088/0965-0393/18/1/015012.
               [46]  MAILLET J B, MARESCHAL M, SOULARD L, et al. Uniaxial Hugoniostat: a method for atomistic simulations of shocked
                    materials [J]. Physical Review E, 2000, 63(1): 016121. DOI: 10.1103/PhysRevE.63.016121.
               [47]  REED  E  J,  FRIED  L  E,  JOANNOPOULOS  J  D.  A  method  for  tractable  dynamical  studies  of  single  and  double  shock
                    compression [J]. Physical Review Letters, 2003, 90(23): 235503. DOI: 10.1103/PhysRevLett.90.235503.
               [48]  SAPOZHNIKOV F A, IONOV G V, DREMOV V V, et al. The embedded atom model and large-scale MD simulation of tin
                    under  shock  loading  [J].  Journal  of  Physics:  Conference  Series,  2014,  500(3): 032017.  DOI:  10.1088/1742-6596/500/3/
                    032017.
               [49]  MARSH S P. LASL shock hugoniot data [M]. Berkeley: University of California Press, 1980: 141–142.



                                                         023101-17
   41   42   43   44   45   46   47   48   49   50   51