Page 46 - 《爆炸与冲击》2023年第2期
P. 46
第 43 卷 杨 鑫,等: 单晶与纳米多晶锡层裂的分子动力学研究 第 2 期
[29] 王嘉楠, 伍鲍, 何安民, 等. 强冲击下金属材料动态损伤与破坏的分子动力学模拟研究进展 [J]. 高压物理学报, 2021,
35(4): 040101. DOI: 10.11858/gywlxb.20210747.
WANG J N, WU B, HE A M, et al. Research progress on dynamic damage and failure of metal materials under shock loading
with molecular dynamics simulation [J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040101. DOI: 10.11858/
gywlxb.20210747.
[30] LUO S N, GERMANN T C, TONKS D L. Spall damage of copper under supported and decaying shock loading [J]. Journal of
Applied Physics, 2009, 106(12): 123518. DOI: 10.1063/1.3271414.
[31] SHAO J L, WANG P, HE A M, et al. Spall strength of aluminium single crystals under high strain rates: molecular dynamics
study [J]. Journal of Applied Physics, 2013, 114(17): 173501. DOI: 10.1063/1.4828709.
[32] HAHN E N, GERMANN T C, RAVELO R, et al. On the ultimate tensile strength of tantalum [J]. Acta Materialia, 2017, 126:
313–328. DOI: 10.1016/j.actamat.2016.12.033.
[33] HAHN E N, FENSIN S J, GERMANN T C, et al. Orientation dependent spall strength of tantalum single crystals [J]. Acta
Materialia, 2018, 159: 241–248. DOI: 10.1016/j.actamat.2018.07.073.
[34] DE RESSÉGUIER T, SIGNOR L, DRAGON A, et al. Spallation in laser shock-loaded tin below and just above melting on
release [J]. Journal of Applied Physics, 2007, 102(7): 073535. DOI: 10.1063/1.2795436.
[35] SOULARD L, DURAND O. Observation of phase transitions in shocked tin by molecular dynamics [J]. Journal of Applied
Physics, 2020, 127(16): 165901. DOI: 10.1063/5.0003089.
[36] XIANG M Z, HU H B, CHEN J, et al. Molecular dynamics simulations of micro-spallation of single crystal lead [J].
Modelling and Simulation in Materials Science and Engineering, 2013, 21(5): 055005. DOI: 10.1088/0965-0393/21/5/055005.
[37] XIANG M Z, HU H B, CHEN J. Spalling and melting in nanocrystalline Pb under shock loading: molecular dynamics studies [J].
Journal of Applied Physics, 2013, 113(14): 144312. DOI: 10.1063/1.4799388.
[38] XIANG M Z, CHEN J, SU R. Spalling behaviors of Pb induced by ramp-wave-loading: effects of the loading rise time studied
by molecular dynamics simulations [J]. Computational Materials Science, 2016, 117: 370–379. DOI: 10.1016/j.commatsci.
2016.02.004.
[39] LIAO Y, XIANG M Z, ZENG X G, et al. Molecular dynamics study of the micro-spallation of single crystal tin [J].
Computational Materials Science, 2014, 95: 89–98. DOI: 10.1016/j.commatsci.2014.07.014.
[40] SHAO J L, WANG C, WANG P, et al. Atomistic simulations and modeling analysis on the spall damage in lead induced by
decaying shock [J]. Mechanics of Materials, 2019, 131: 78–83. DOI: 10.1016/j.mechmat.2019.01.012.
[41] WANG K, ZHANG F G, HE A M, et al. An atomic view on spall responses of release melted lead induced by decaying shock
loading [J]. Journal of Applied Physics, 2019, 125(15): 155107. DOI: 10.1063/1.5081920.
[42] WANG X X, HE A M, ZHOU T T, et al. Spall damage in single crystal tin under shock wave loading: a molecular dynamics
simulation [J]. Mechanics of Materials, 2021, 160: 103991. DOI: 10.1016/j.mechmat.2021.103991.
[43] RAVELO R, BASKES M. Equilibrium and thermodynamic properties of grey, white, and liquid tin [J]. Physical Review
Letters, 1997, 79(13): 2482–2485. DOI: 10.1103/PhysRevLett.79.2482.
[44] HIREL P. Atomsk: a tool for manipulating and converting atomic data files [J]. Computer Physics Communications, 2015,
197: 212–219. DOI: 10.1016/j.cpc.2015.07.012.
[45] STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO –the open visualization tool [J].
Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012. DOI: 10.1088/0965-0393/18/1/015012.
[46] MAILLET J B, MARESCHAL M, SOULARD L, et al. Uniaxial Hugoniostat: a method for atomistic simulations of shocked
materials [J]. Physical Review E, 2000, 63(1): 016121. DOI: 10.1103/PhysRevE.63.016121.
[47] REED E J, FRIED L E, JOANNOPOULOS J D. A method for tractable dynamical studies of single and double shock
compression [J]. Physical Review Letters, 2003, 90(23): 235503. DOI: 10.1103/PhysRevLett.90.235503.
[48] SAPOZHNIKOV F A, IONOV G V, DREMOV V V, et al. The embedded atom model and large-scale MD simulation of tin
under shock loading [J]. Journal of Physics: Conference Series, 2014, 500(3): 032017. DOI: 10.1088/1742-6596/500/3/
032017.
[49] MARSH S P. LASL shock hugoniot data [M]. Berkeley: University of California Press, 1980: 141–142.
023101-17